Agenda
2024 PDA Visual Inspection Forum

Tuesday, 9 April

08:00 – 17:30
Registration Open
Eventfoyer

09:00 – 09:05
Welcome and Introduction
Room Ludwig-Alois
Committee: Falk Klar PhD PDA Europe

09:05 – 09:15
Welcome from the Co-Chairs
Room Ludwig-Alois
Co-Chair: John G Shabushnig PhD Principal Consultant Insight Pharma Consulting, LLC
Co-Chair: Romain Veillon PharmD Director Vision Technology MSAT GSK

09:15 – 11:15
Opening Plenary: Particles: A Pharmacy and Regulatory Perspective
Room Ludwig-Alois
This session focuses on particles in parenteral drugs and how and where they are seen. It will provide both a new understanding of the size and types of particles that can be routinely detected during visible inspection and what is seen by pharmacists in clinical practice. It concludes with an update on current regulatory experience and expectations from the U.S. Food and Drug Administration.
Moderator: John G Shabushnig PhD Principal Consultant Insight Pharma Consulting, LLC

09:15 – 09:45
Visible, Subvisible, and Microparticles in Parenteral Drugs – Facts and Figures in Daily Clinical Practice
Room Ludwig-Alois
Academic Presenter: Irene Kraemer PhD Director Department of Pharmacy University Medical Center, Johannes Gutenberg-University Mainz

09:45 – 10:15
From Blur to Clarity: Definition of Particle Visibility Threshold in Parenteral Drug Products
Room Ludwig-Alois
Co-Presenter: Felix Nikels Senior Principal Scientist Boehringer Ingelheim
Co-Presenter: Atanas Koulov PhD Chief Scientific Officer Clear Solutions Laboratories AG
Control of Visible Particulates in Injectable Pharmaceutical Products: A Life-Cycle Approach
Room Ludwig-Alois

Observation of visible particulates continued to be one of the major problems in injectable pharmaceutical products. Visible particulates can form during all the stages of product life-cycle, including manufacture, storage, shipping, and delivery at the patient’s site. If visible particulates are inadvertently administered to patients, they could jeopardize patient safety. In recent years, there have been many recalls associated with visible particulates in injectable pharmaceutical products, and these recalls have led to drug shortages, putting patients at risk. Therefore, regulatory authorities require injectable pharmaceutical products to be essentially free of visible particulates. Manufacturers can achieve these expectations by implementing a life-cycle approach to visible particulate control through understanding the manufacturing process, product, container closure system, and regulatory requirements. This presentation will focus on the life-cycle approach to visible particulate control from a regulatory perspective.

Regulatory Presenter: Rukman S De Silva PhD Policy Lead, OPQ/OPPQ/CDER U.S. FDA

Q&A, Discussion
Room Ludwig-Alois

Moderator: John G Shabushnig PhD Principal Consultant Insight Pharma Consulting, LLC
Panelist: Irene Kraemer PhD Director Department of Pharmacy University Medical Center, Johannes Gutenberg-University Mainz
Panelist: Felix Nikels Senior Principal Scientist Boehringer Ingelheim
Panelist: Atanas Koulou PhD Chief Scientific Officer Clear Solutions Laboratories AG
Regulatory Panelist: Rukman S De Silva PhD Policy Lead, OPQ/OPPQ/CDER U.S. FDA

Networking Coffee Break, Poster Session & Exhibition
Eventfoyer

Session 1: Particle Identification and Life Cycle Case Studies
Room Ludwig-Alois

Understanding the source and composition of particulate matter provides the necessary substrate for the development of adequate control strategies and particle life cycle management. This session will discuss the development of analytical methods and tools for particle ID at manufacturing sites as well as a case study of the investigation of intrinsic particulates in early-stage development. Finally, the successful implementation of a visual inspection and particle life cycle management program will be highlighted.

Moderator: Markus Lankers PhD Managing Director MIBIC GmbH & Co KG

Company-Wide Particle Life Cycle Management - A Success Story
Room Ludwig-Alois

This presentation will guide you through a success story of developing and rolling out a global, company-wide visual inspection and particle life cycle management program. We aim to share how we achieved improvements across multiple disciplines relating to particle LCM and lessons learned from the past 4 years. Furthermore, we want to highlight new challenges in regulations and materials that arise with the introduction of advanced therapy medicinal products (CGT) and how to effectively implement particle LCM in small-scale manufacturing.
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Presenter</th>
<th>Company/Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:00 – 12:15</td>
<td>Investigation of Intrinsic Particulates in Sterile Solution: Case Study on Process vs Product Root Cause</td>
<td>Antonio</td>
<td>Global Head of Visual Inspection & Particle LCM Takeda Pharmaceuticals International AG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Burazer</td>
<td>Takeda Pharmaceutical International AG</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:15 – 12:30</td>
<td>Identify Me – Particle Analysis at a Site Level</td>
<td>Valerie</td>
<td>Lead Inspection Operator and Technologist GSK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pritiskutch</td>
<td>GSK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Beattie</td>
<td>Baxter Healthcare</td>
</tr>
<tr>
<td>13:05 – 14:20</td>
<td>Networking Lunch Break, Poster Session & Exhibition</td>
<td>Markus</td>
<td>Managing Director MIBIC GmbH & Co KG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lankers</td>
<td>MIBIC GmbH & Co KG</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Romain</td>
<td>Director Vision Technology MSAT GSK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Veillon</td>
<td>GSK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:50 – 14:20</td>
<td>Guided Poster Walk</td>
<td>Antonio</td>
<td>Global Head of Visual Inspection & Particle LCM Takeda Pharmaceuticals International AG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Burazer</td>
<td>Takeda Pharmaceutical International AG</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Valerie</td>
<td>Lead Inspection Operator and Technologist GSK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pritiskutch</td>
<td>GSK</td>
</tr>
<tr>
<td>Time</td>
<td>Event Description</td>
<td>Venue</td>
<td>Poster Presenter(s)</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>13:50 – 14:20</td>
<td>Identify & Eliminate Sources of Visible Particles</td>
<td>Eventfoyer</td>
<td>Clay Foutch</td>
</tr>
<tr>
<td>13:50 – 14:20</td>
<td>Probability of Detection Study</td>
<td>Eventfoyer</td>
<td>Menno Sels</td>
</tr>
<tr>
<td>13:50 – 14:20</td>
<td>Detection of defects in externally coated glass vials with automated visual inspection</td>
<td>Eventfoyer</td>
<td>Nico Spribille Commercial Director Europe Corning Inc.</td>
</tr>
</tbody>
</table>

Interactive Questionnaire Session

Room Ludwig-Alois

Moderator: Hanns-Christian Mahler PhD (Chief Enablement Officer) ten23 health AG

Session 2: Visual Inspection Challenges for Difficult to Inspect Products

Room Ludwig-Alois

Visual inspection has become a very well-established process that is key to warranty patient safety and product quality but there are still niche products that represent a challenge for implementing it effectively. In this session, we present some very interesting case studies focused on the inspection of difficult products like biologics or where presentation or container creates particular difficulties in the inspection process.
Moderator: Andrea A Sardella PhD Product Development Manager Stevanato Group

14:35 – 14:50
Visual Inspection and Particle Mitigation Approaches for Autologous Cell Therapies
Room Ludwig-Alois

Cell and Gene Therapy (CGT) products are currently held to the same regulatory requirement as any other injectable. Therefore they are also subject to visual inspection according to USP <790> / USP <1790> or EP2.9.20. Applying these standards reveals challenges, especially for autologous products. Challenges include such things as the difficulty to inspect, as products often have turbid appearance, and may be in rather large volume bags. On the other hand, it is impossible to apply destructive testing for such products as a batch is generally a very limited number of units, sometimes even a single unit. Further, concepts such as AQL testing or reinspection may also show challenges to the stability of the product in non-frozen conditions. These types of non-frozen products can form cell aggregates in a very fast manner, and although inherent particles, may be difficult to distinguish from other intrinsic or extrinsic particles. Ultimately, the lack of a robust particle mitigation strategy and batch disposition pathway poses a risk to administration, especially autologous therapies. An in-depth understanding of particle load within the process and individual raw materials and consumables (intrinsic, inherent, or extrinsic), coupled with control measures, including filtration in the process and at the patient bedside, is essential to deriving the pathway for drug product administration. We would like to present the approach that Lonza has taken for the VI of such products, by using dedicated product-specific visual inspection training. We will also focus on the challenges we encountered during the development, manufacturing, and qualification of such product-specific visual inspection test sets, based on now commercially available autologous cell therapy. Moreover, we would like to present the particle mitigation strategies put in place to de-risk the pathway for drug product administration.

Presenter: Pascal Chalus PhD Associate Director Lonza AG
Co-Presenter:

14:50 – 15:05
Attention to Detail – A Case Study on Particle Inspection in IV Bags
Room Ludwig-Alois

IV bags are manufactured and filled in cleanroom environments to avoid contamination from the outside. Nevertheless, in each processing step up until sealing, there is a slight chance of particles or other defects getting into the bag. Detecting these contaminations in the manufacturing process early and reliably will increase patient safety and save costs for the manufacturer. However, the nature of particles is such that they are not easy to detect. • Different particle categories demand distinct detection methods for reliability. • Particles and contaminations can move freely in the IV bag and could be located in hard-to-see areas like the seal or ports. • The presence of intricate printing on the IV bag can obstruct particle detection. • Particle sizes can be small, down to 50μm, and need detection in large-volume bags. In this case study, we worked on finding solutions for different contamination classes and various defects in the IV bags. To mitigate the impact of false rejections, caused, for example, by bubbles, methods employing artificial intelligence (AI) have been evaluated. The handling of the IV bags for inspection was one of the major challenges. We will describe the case with a focus on new inspection tools and the achievements in the running manufacturing process.

Co-Presenter: Thorsten Daus Product manager VITRONIC Dr.-Ing. Stein Bildverarbeitungssysteme GmbH
Co-Presenter: Rupert Gschwendtner Head of R&D Medical Kiefel GmbH

15:05 – 15:20
Visual Inspection of Small-Volume Parenteral Products
Room Ludwig-Alois

The visual inspection of parenteral drug products presents a challenging yet critical unit operation within pharmaceutical drug product manufacturing. Visual inspection relates to detecting minor, major, and critical defects of the final drug product. These defects can relate to a variety of defects, including defects related to the primary packaging or to the product solution itself, such as particulate contamination, and are thus essential for ensuring product compliance and quality. As a result, parenteral preparations are 100% visually inspected either manually or using semi- or fully automated inspection systems with unique advantages and disadvantages typically followed by AQL testing. Several key factors contribute to the complexity of the visual inspection process. First, the nature of the biological formulation, including the presence of proteins and excipients, can lead to inherent coloration, opacity, or turbidity, which further obstructs a clear view of the product. This opacity poses a challenge in detecting particulates, which may differ in size and nature, or critical defects that may be present. Secondly, the primary packaging configuration about the fill volume - typically in the milliliter range, but lately in the 50 to 100 μL-range e.g., for intravitreal products, makes it challenging to find and confirm defects such as visible particulate matter or other contaminants, and training of personnel is essential to ensure appropriate sensitivity of the visual inspection method. Moreover, the high value and limited availability of biological drugs make it imperative to minimize false rejections during inspection, as this can result in significant economic losses. This presentation highlights the challenges for visual inspection especially of small-volume
The purpose of this session was to discuss practical issues faced by people who work in the field of visual inspection. The discussion will include examples of current considerations for selecting statistical sampling and advancements of future direction for combined visual inspection applications for small drug product batches.

Moderator: Rukman S De Silva PhD Policy Lead, OPQ/OPPQ/CDER U.S. FDA

16:25 – 16:50

Counterintuitive Thinking: Why Accept on Zero Sampling Plans Allow MORE Defects to be Released

Room Ludwig-Alois

Sharp knives are safer than blunt knives. If you’re in a sinking vehicle, you should wait until water fills it before opening an exit. Accept zero sampling plans allow more defects to be released to the market than sampling plans with the same AQL that accept one or more defects. What do all these things have in common? They’re examples of counterintuitive thinking. Explore the math behind AQL Sampling and empower yourself to make better release decisions through colorful explanations of Operating Characteristic (OC) Curves and exciting audience participation games.

You’ll be amazed at all the fun you’ve been missing!

Presenter: Richard Monell Principal Engineer Baxter Healthcare

16:50 – 17:10

An Innovative Idea to Combine Visual Inspection with Compendial Method Testing

Room Ludwig-Alois

An innovative idea to combine visual inspection with compendial method testing for a faster and material-saving small-batch release. Concept by Stevanato Group and RocheNew drugs with complex formulas or personalized medicine is growing and requiring new guardrails. Small batch sizes combined with small manufacturing capacities result in fewer samples available for analytical testing to release the batch. Therefore, material-saving
has become necessary, and new non-destructive technologies with efficient execution of testing are the future state. Stevanato Group and F. Hoffmann-La Roche AG use joint forces to deliver a process innovation driven by platform thoughts and robot systems that improve the release of small batches. In this speech, we will present the concept and idea of a combined visual inspection application (vision robot unit, VRU) with a compendial testing platform (CTP) to allow non-destructive and real-time release testing of small batches of biotech and high-value drugs. We will explain the benefits of a flexible platform solution to enable real-time release, allow for a fleet approach matching the idea of the factory of the future, and serve the manufacturing needs of both clinical trial and industrialization phases.

Co-Presenter: Susanne Gawenda PhD Senior Quality Control Expert Analytical Science, Roche Diagnostics GmbH Mannheim

Co-Presenter: Andrea A Sardella PhD Product Development Manager Stevanato Group

17:10 – 17:45

Q&A, Discussion
Room Ludwig-Alois

Moderator: Rukman S De Silva PhD Policy Lead, OPQ/OPPQ/CDER U.S. FDA

Panelist: Susanne Gawenda PhD Senior Quality Control Expert Analytical Science, Roche Diagnostics GmbH Mannheim

Panelist: Richard Monell Principal Engineer Baxter Healthcare

Panelist: Andrea A Sardella PhD Product Development Manager Stevanato Group

17:45 – 22:00

End of Conference Day 1 & Networking Event

Wednesday, 10 April

08:30 – 16:30

Registration Open
Event foyer

09:00 – 09:05

Welcome to Day 2
Room Ludwig-Alois

Co-Chair: John G Shabushnig PhD Principal Consultant Insight Pharma Consulting, LLC

Co-Chair: Romain Veillon PharmD Director Vision Technology MSAT GSK

09:05 – 10:25

Session 4: Automation in Visual Inspection & Artificial Intelligence
Room Ludwig-Alois

New Automatic Visual Inspection equipment can deliver Deep Learning capacities that can now reach unmet performances in term of defect detection and false reject management. A.I. validation will require explainability to give transparency and trust to regulators. An example of ongoing deployment to production may inspire your organization.

Moderator: Romain Veillon PharmD Director Vision Technology MSAT GSK
09:05 – 09:20
Deep Learning for Enhanced AVI Detection Combined with Rule-Based Image Sequence Tracking for False Fail Reduction
Room Ludwig-Alois

Visual inspection of parenteral is normally achieved by rotating the glass container, acquiring images, and performing detection algorithms based on Deep Learning (DL) or rule-based techniques. Each image of a sequence is classified independently from the others and the outcome is aggregated to obtain a result regarding the full sequence. However, due to the nature of the glass containers, the same artifact will look different in every image. This results in confidence levels for the same object varying across the whole sequence, making a final decision more challenging – even when DL techniques are utilized. In our approach, the relevant image regions – region of interest (ROI) – are localized using simple classical image processing tools. A deep neural network is used to classify the extracted image regions. The model is combined with a rule-based classification method that relies on expert knowledge to increase the confidence level of the decision. The combination of the different classifiers allows the strengths of deep learning to be used complimented by the rule-based approaches that support the reduction of false fails. Thereafter, all ROIs of an image sequence that show the same artifact are clustered using their positional information. Finally, a decision function is applied to each detected artifact exploiting its occurrence across all images of the sequence, which increases the reliability of the outcome. It’s especially powerful during the analysis of heavy particles sticking on a syringe plunger or classifying air bubbles that lead to costly false fails during the visual inspection process.

Co-Presenter: Al Goodwin B.Sc (Eng.) HDip PRINCIPAL ENGINEER AMGEN
Co-Presenter: Wolfgang Brandenburger Dipl.-Ing. Data Scientist Inspection Systems Development Körber Pharma

09:20 – 09:35
Navigating the Black Box: Monitoring and Explaining Deep Learning Models for AVI
Room Ludwig-Alois

In the era of deep learning, where models are often referred as ‘black boxes,’ understanding and trusting their decisions is crucial, particularly in high-stakes applications. This presentation addresses this challenge by exploring techniques for both explaining and monitoring complex models for Automated Visual Inspection in Drug Manufacturing. We will examine methods for explaining model predictions and delve into strategies for real-time monitoring, encompassing concept drift detection and performance tracking for deployed models. By attending this session, you will gain insights into ensuring reliability and transparency in deep learning models, fostering Responsible AI in critical domains.

Co-Presenter: Ioanna Psylla MSc Technical Product Owner Novo Nordisk
Co-Presenter: Michal Stepień MSc OT Data Engineer Novo Nordisk

09:35 – 09:50
Unlocking Potential: AI-Powered Visual Inspection in Commercial Use
Room Ludwig-Alois

Artificial Intelligence (AI) offers huge possibilities to increase Detection Rates (DR), reduce False Reject Rates (FRR), and make overall inspection processes more stable and robust about production variations. The main challenges in applying AI systems within pharmaceutical Automatic Visual Inspection machines (AVIs) involve (i) the provisioning of the required computational power, also for already existing inspection machines, (ii) the proper training and development of generalizing and robust AI models as well as (iii) the end-to-end documentation of the AI model meeting all GxP requirements. In this case study, we present a machine-agnostic solution that solves the above-mentioned challenges by (i) using high-computational edge devices that enable AI empowerment of AVI’s within 2 days and (ii) training of robust and reliable AI models that generalize beyond the defect kits due to artificial data generation including the usage of generative AI,(iii) documenting the versioned AI models end-to-end within dedicated Model Change Reports. In our co-presentation with ThermoFisher, we showcase the application of AI to a liquid product in commercial production. The challenges and learnings of (i) the edge device installation and qualification, (ii) the data acquisition, augmentation, artificial data generation, and the subsequent AI model training as well as (iii) the corresponding documentation are presented. A special focus is dedicated to the topic of artificial data generation to assure data representativeness and mitigate the common pitfalls of overfitted AI models. As a result of the AI model, the inspection system is achieving +20% higher DR while at the same time reducing FRR by ~80%.

Co-Presenter: Mario Holl MSc, PhD Managing Director InspectifAI GmbH
Co-Presenter: Alessandra Corbisiero Automation &CSV Manager Patheon, by Thermo Fisher Scientific

09:50 – 10:25
Q&A, Discussion
Room Ludwig-Alois
Moderator: Romain Veillon PharmD, Director Vision Technology MSAT GSK
Panelist: Wolfgang Brandenburger Dipl.-Ing., Data Scientist Inspection Systems Development Körber Pharma
Panelist: Alessandra Corbisiero Automation &CSV Manager Patheon, by Thermo Fisher Scientific
Panelist: Al Goodwin B.Sc (Eng.) HDip, PRINCIPAL ENGINEER AMGEN
Panelist: Mario Holl MSc, PhD, Managing Director InspectifAI GmbH

10:25 – 10:55
Networking Coffee Break, Poster Session & Exhibition
Eventfoyer

10:55 – 12:15
Session 5: Emerging Technologies for Visual Inspection
Room Ludwig-Alois
As our reliance on technology continues to grow, it plays an increasingly crucial role in enhancing our daily lives and optimizing various operations. This session delves into the realm of emerging technologies, specifically focusing on their applications in visual inspection. Explore two groundbreaking examples that showcase how these innovative approaches are revolutionizing visual inspection within the pharmaceutical industry.

Moderator: Linda Wildling PhD, Head of Digital Innovation Success Management Takeda Pharmaceuticals International AG

10:55 – 11:20
Reducing Inspection Complexity by Introducing Beyond-Human Sensing for Lyophilized Vaccine Inspection
Room Ludwig-Alois
Lyophilized vaccines are complex products to inspect due to the acceptable variation in their appearance. This complexity makes automating the inspection of lyophilized vaccines a difficult and computationally expensive challenge. However, automated inspection is an important cornerstone of ensuring a sufficient supply of vaccines against diseases such as Dengue, Malaria, or Zika that increasingly present a public health threat in a growing number of regions due to the warming climate. In this work, we introduce a paradigm to define the complexity of products concerning inspection. The paradigm utilizes the intraclass variations in acceptable and unacceptable products as well as the interclass variation between both to establish a measure of complexity. We apply this paradigm to lyophilized vaccines and use it to motivate decision feature transformation beyond human sensor modalities. We then discuss a sensor strategy for data collection that lowers the computational requirements for AI in industrial inspection. Beyond humans, sensors can be used to image features invisible to the human eye and therefore enhance the decision features available for inspection. Furthermore, different sensor modalities can be combined in a way that allows inspection of distinct product layers and therefore provides more information than traditional inspection approaches. Finally, we introduce different examples of beyond-human sensor modalities applied to the inspection of lyophilized vaccines. Polarization vision can be used to distinguish between typical product appearance variation and defects while IR imaging unveils glass defects otherwise obscured by visually opaque vaccine powder. Lastly, RF sensing allows a view of metal particles hidden inside the lyophilized vaccine cake.

Academic Presenter: Denise Tellbach MA, PhD Candidate Massachusetts Institute of Technology

11:20 – 11:45
Water Proton Nuclear Magnetic Resonance (wNMR) for Noninvasive Pharmaceutical Analysis
Room Ludwig-Alois
Water is the common solvent used in biomanufacturing and biologics formulation. The concentration of water is much higher than that of the API, excipients, and adjuvants. Water proton nuclear magnetic resonance (wNMR) measurements can be carried out using benchtop instruments, typically within a minute. Most importantly, wNMR measurements can be carried out in an in situ and contact-free manner. This opens the door for
rapid formulation screening, noninvasive product inspection, and contact-free in-line processing monitoring. In this presentation, examples of different wNMR applications will be presented.

Academic Presenter: Bruce Yu PhD Professor University of Maryland School of Pharmacy

11:45 – 12:15

Q&A, Discussion
Room Ludwig-Alois

Moderator: Linda Wildling PhD Head of Digital Innovation Success Management Takeda Pharmaceuticals International AG
Panelist: Denise Tellbach MA PhD Candidate Massachusetts Institute of Technology
Panelist: Bruce Yu PhD Professor University of Maryland School of Pharmacy

12:15 – 13:15

Networking Lunch Break, Poster Session & Exhibition
Eventfoyer

13:15 – 13:30

Interactive Questionnaire Session
Room Ludwig-Alois

Moderator: Herve Soukiassian Assoc. Director – Product Development BD

13:30 – 14:15

Closing Plenary: Current and Future Perspective Part I
Room Ludwig-Alois

This session will try humbly to reconcile the patient, the engineer, and the citizen...should the three be the same person. Starting with the current situation of the strategic Visual Inspection process, we'll then explore two potential forthcoming avenues. The first one will dive into the inevitable topic of data, and how to make sense of them beyond visual inspection itself. At the same time, the latter will share how the ecology of sense-making has contributed to serving sustainability ambitions in the microelectronic sector.

Moderator: Herve Soukiassian Assoc. Director – Product Development BD

13:30 – 13:50

Highlights from the PDA Visual Inspection Survey 2023
Room Ludwig-Alois

Visual inspection is an important process monitoring and control element for pharmaceutical manufacturing. Inspection practices vary within the industry, and it is informative to review common practices. This comparison is facilitated through benchmarking and the presentation will include highlights from the PDA visual inspection survey completed in 2023. This is an update to past surveys that were completed in 1996, 2003, 2008, and 2014. Comparison to these past surveys helps identify what has changed (and what has not). The survey includes responses from all major pharmaceutical markets and addresses manual, semiautomated, and automated inspection methods. Critical inspection parameters, acceptance sampling, and inspection results will be discussed. The presentation will conclude with a look at comments received from the survey respondents on future inspection trends.

Presenter: John G Shabushnig PhD Principal Consultant Insight Pharma Consulting, LLC
13:50 – 14:15
Use Cases on Data Analytics to Increase Inspection Transparency and Machine Availability
Room Ludwig-Alois

Increasing data storing and processing capabilities opens new opportunities for helpful tools to increase the inspection process and monitor upstream equipment. The following use cases indicate what is technically already possible today:

- Root analysis of defect creation by upstream equipment
- Show how data monitoring can help to increase the yield of inspection equipment
- Early, data-driven recognition of machine failure
- Particle tracing of a complete image sequence
- Defect monitoring with AI.

Presenter: Felix Riehn MSc Head of Product Management Körber Pharma

14:15 – 14:45
Networking Coffee Break, Poster Session & Exhibition
Eventfoyer

14:45 – 14:50
Passport Raffle
Room Ludwig-Alois

Moderator: Melanie Decker

14:50 – 16:20
Closing Plenary: Current and Future Perspective Part II
Room Ludwig-Alois

Moderator: Herve Soukiassian Assoc. Director – Product Development BD

14:50 – 15:15
Knowledge Management to Reach Challenging Sustainability Goals
Room Ludwig-Alois

In 2024, working on reducing our environmental footprint has become a standard of the industry. Most healthcare companies have now set their sustainability goals. However, there are several challenges to overcome to reach these goals linked to the healthcare industry environment:

- How to manage the right traceability level to use recycled materials and maintain the value?
- How to manage properly re-use &/or refurbish while maintaining the right level of safety and quality?
- How to reduce waste generation at the right stage (as early as possible in the value chain)?
- How to minimize energy and materials usage by optimizing the supply chain? To enable that transition, it is critical to have the right data collection in place and the right analysis at the right level. These are the first bricks to enable managing traceability, risk management, and operational efficiency at the same time. The real challenge remains to engage and change whole organizations altogether towards new ways of working. The unification of human expertise, operational event record, decision-making, and traceability is crucial to reaching “zero defect” and “zero unnecessary waste” objectives. In this talk, a concrete example of the semiconductor industry is going to be shared on how it was leveraged and the actual benefits of a tailor-made knowledge management system. There would be a focus on the preventive maintenance improvement implementation and how the human aspect was considered.

Co-Presenter: Helene Vacelet PhD Sustainability Senior Program Manager Becton Dickinson Pharmaceutical Systems

Co-Presenter: Stephane Hubac Manufacturing Science Fellow Retired From STMicroelectronics

15:15 – 16:00
Closing Panel Discussion
Room Ludwig-Alois

Moderator: Herve Soukiassian Assoc. Director – Product Development BD

Regulatory Panelist: Rukman S De Silva PhD Policy Lead, OPQ/OPPQ/CDER U.S. FDA

Panelist: Stephane Hubac Manufacturing Science Fellow Retired From STMicroelectronics

Panelist: Irene Kraemer PhD Director Department of Pharmacy University Medical Center, Johannes Gutenberg-University Mainz

Panelist: Richard Monell Principal Engineer Baxter Healthcare

16:00 – 16:15

Co-Chairs Conference Summary
Room Ludwig-Alois

Co-Chair: John G Shabushig PhD Principal Consultant Insight Pharma Consulting, LLC

Co-Chair: Romain Veillon PharmD Director Vision Technology MSAT GSK

16:15 – 16:20

Introduction to Site Visit at the Körber Pharma Facility
Room Ludwig-Alois

Presenter: Christian A Scherer Dipl.-Ing. Executive Vice President Sales Körber Pharma

16:20 – 16:25

Closing Remarks & Farewell
Room Ludwig-Alois

Committee: Falk Klar PhD PDA Europe