

EU GMP Annex 1

From Guidance to Practice: Bridging Annex1 into daily operations Practical Procedures

Álvaro Yepes

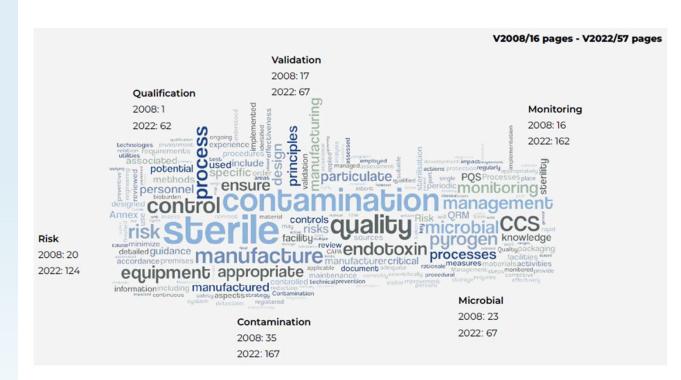
Technical Director in BU Contamination Control Alsico Iberia- Barcelona, Spain

Contents

- Context
- CCS
- Example of CCS workload for Isolator
- Cleaning vs Disinfection vs Residue Removal.
- Mopping Technique Adjustment for Annex 1 compliance
- Biocide Residue Challenges
- Mopping Technique for Effective (and fast) Residue Removal
- Overview of Garment Use impact during life cycle
- CCS Master file example for Spill Recovery in Filling Line: the impact of wipers in particle and fiber risk of contamination
- EN 16617 lessons

International cooperation between EC, EMA, WHO, and PIC/S

Public consultation:


- December 2017 = 6,300 comments/ 3-month 1st consultation = + 2 year review by the Working Group 2018-19.
- Second Draft $+2^{nd}$ joint consultation 2020 = 2,000 aprx. comments + > 1,5 yr review.

The final version of the revised Annex 1 was published on 25 August 2022, some 7 years after the revision process started.

Effective since 25 August 2023;

And one year later for section 8.123 - lyophilisers that are manually loaded or unloaded with no barrier technology separation - to be sterilised before each load

APIs, Excipients,
Materials,
Intermediate
Product, Personnel,
Processes, Finished
Product

Focused on Microbial, Endotoxin and Particles as potential contaminants of...

Parameters and Attributes Controls,
Frequency and
Acceptance
Criteria for...

Elements of the CCS have been present and evolved since long before new Annex 1, however consolidating under one single document has provided a powerful tool for communication between:

- Technical Staff and Financial/Upper Management
- Different departments with previous "silo" isolated perspective
- Company auditors and regulator authorities
- CDMOs clients.

		CCS MASTERF	ILE EXAMPLE F	3							
1. Process Step	2. Function	3. Source of Contamination	4. Potential Failure	5. Effect	6. Frequency/Occurence	0	7. Severity	S 8. Detectability PoD	D 9	. Proximity to Critical Area	RPN 1
Filling process		Material	Particle and fiber reaching critical filling area	Potentially contaminated vials with foregin matter	Operation performed several time per batch.		High -Med	Low		Machine non-contact parts out close to direct contact parts	
	cleaning	Personnel	Microbial content realeased in filling area	Microbial contamination in Class A area	Operation performed several time per batch.		High	Very Low	b	fachine non-contact parts ut close to direct contact arts	<u>u</u>

10. Method To control de Hazard	11. Document	12. Corrective Actions	13. Current Status	14. Comments
Reduce number of wipers per task.				
Select higher quality materials.		Sample surface after intervention with		
Establish testing confirmation frequency	SOP NNXX V-#	black wipe periodically	Under review	
Train operators on SOP compliance frequently to				
ensure minimal use of wipes and unnecessary		See operators performing intervention.		
friction of material.	SOP NNXX V-#	Retrain.	Completed	
Use 400/600 mm gloves and Sanitize frequently	SOP NNXX V-#		Completed	
Use high retention fabric in garment arms	URS CRGXX V#		Under review	

Practical Impact of Annex 1 CCS work Case Isolator Filling Line

1920 working hours

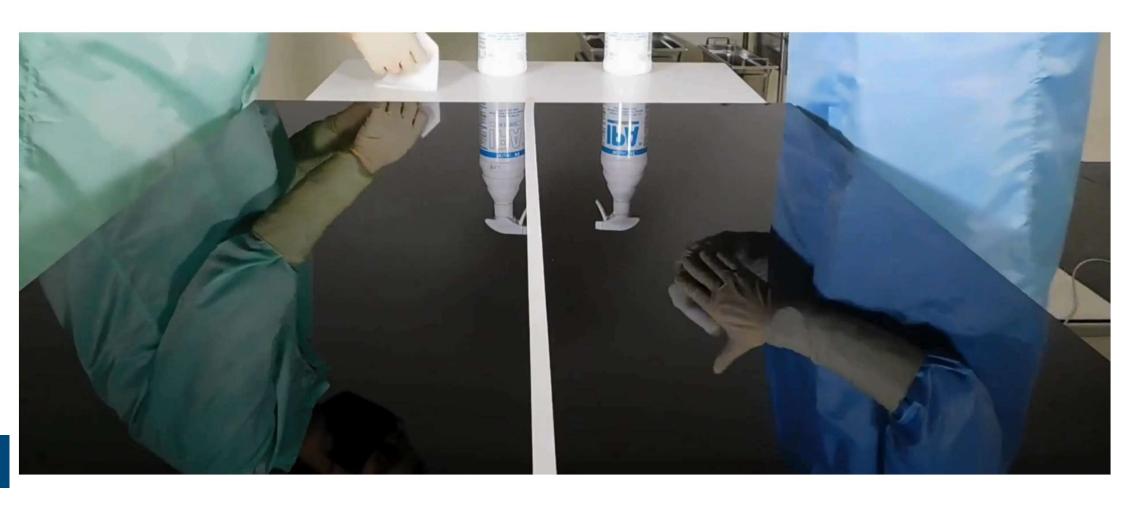
Daily practice Contamination Control Challenges under Annex 1

- Wiping
- Mopping
- Gowning and Personnel

PRELIMINARY CLEANING

- Reduces or eliminates residues from the pharmaceutical process, fibers and other "dirt".
- Requires specific techniques and proper materials to apply mechanical action and release the contaminants from the surface and transfer them to a "carrying liquid"

DISINFECTION


- Biocidal action from chemicals.
- •Requires a WET CONTACT TIME and is enhanced by Mechanical Action. (EN 16615).
- •Leaves residues ...some more visible than others! Residues accumulate.
- Technique different to cleaning.

RESIDUE REMOVAL

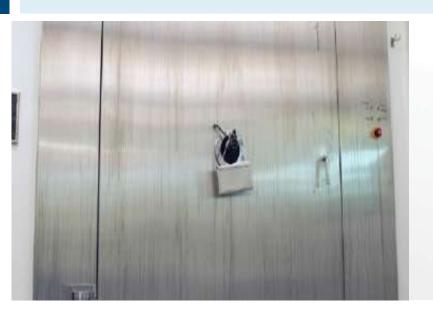
- Eliminates effectively the residues left by biocides after they dry.
- •Requires mechanical action through materials with high dislodging and removal power.
- Visual aspect of surface defines how often needs to be done.
- Accumulated "old residues" usually require "reset" by proper means.
- Critical to prevent corrosion caused by strong sterilant chemicals.

Biocide Wet Contact Time Challenges Mopping and Wiping

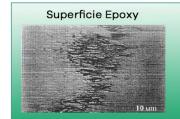
Mopping Technique Adjustments for Annex 1

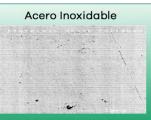
SOP Improvement - Must haves:

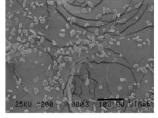
- Wet contact time must be maximized
- Coverage must be even
- Variability of drying time should be the minimum possible.
- Eliminate the need for double application.

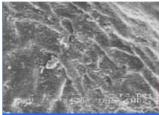

Nice to have:

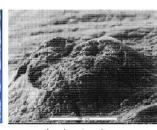
Liquid waste reduced when doing walls.

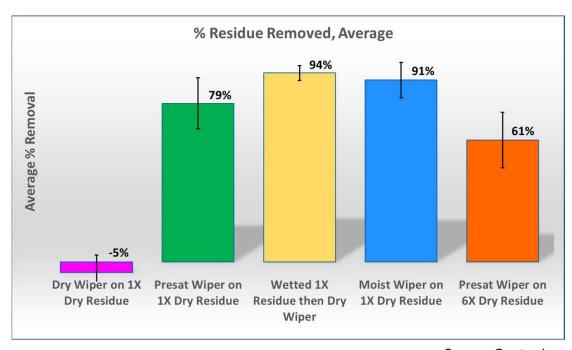



Obtaining correct wet contact time will increase visible residue levels not acceptable under Annex 1









Hipoclorito de sodio

Source: Foamtec Int and Veltek Associates

Disinfectant Residues and removal

Product	Residue on Evaporation / ppm				
IPA	0				
Denatured Ethanol	2				
6% Hydrogen Peroxide	7				
Hypochlorous Acid	1,118				
Hypochlorous Acid	1,474				
Quat / Biguanide	5,256				
Amphoteric / Biguanide	5,948				
Quat / Biguanide	6,106				
Quat /Chlorine Dioxide	20,595				
Amphoteric Surfactant	62,213				

Source: Contec Inc

The past and present of expectations

Disinfected

 Disinfected + residues removed until visually clean

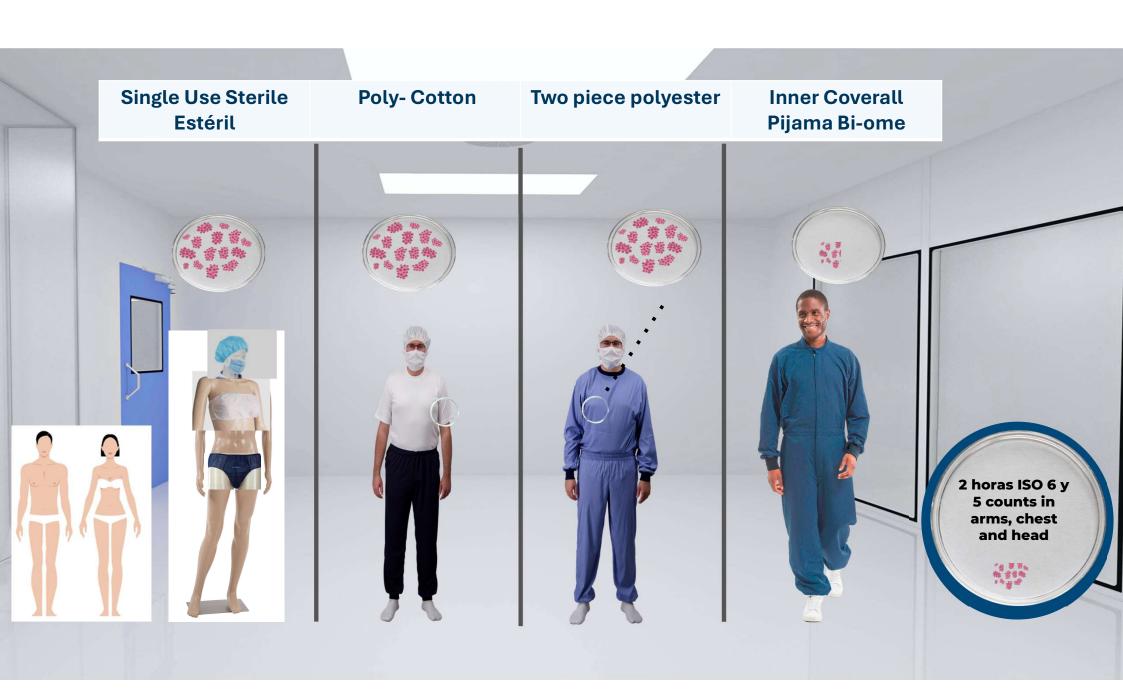
Mopping technique adapted for residue removal or heavy production residue cleaning

VS

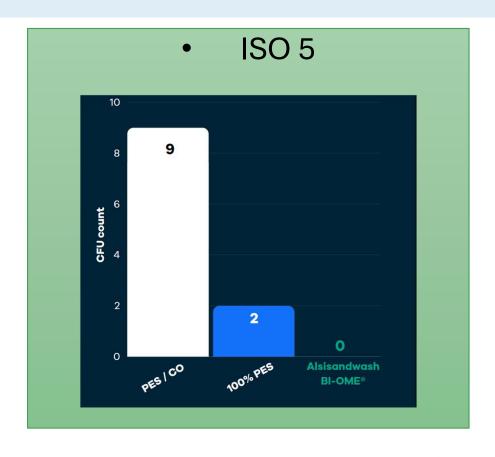
Curling

VS

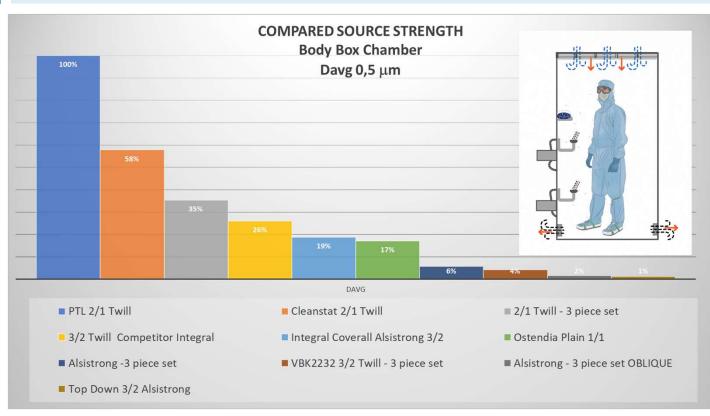
Disinfection


Human Contamination and Garment System as a barrier- Complexities of Life Cycle Approach

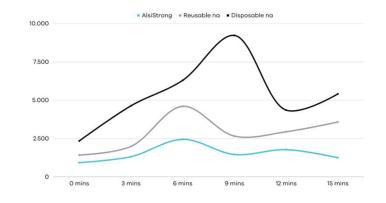

Southern California Chapter

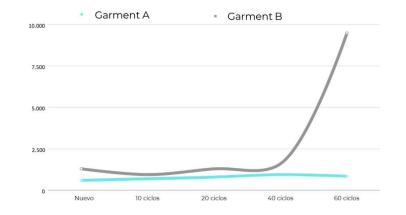

Connecting People, Science, and Regulation

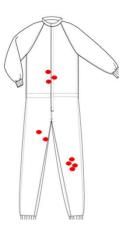
- Annex 1 requires qualification of impact of use in the efficacy of garment system:
- In use particle generation changes over lifecycle → Understand Worst Case
- Changes in Gowning Area design to accommodate:
 - Inner Garment
 - Socks
 - Visual inspection pre-use and post-use
- Full gown system qualification
 - Goggles
 - Outer and Inner Garment
 - Gloves


Impact of Inner Garment Choice for Risk Mitigation Under Annex 1 Proactive Approach

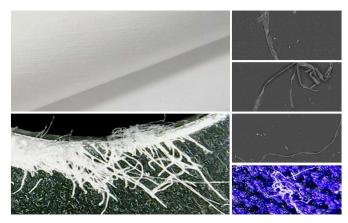
Impact of fabric selection and garment design in particle source strength –Body Box Testing


- Impact in risk of operations.
- Impact in particle load in the context of new ISO14644-19




Risk operations

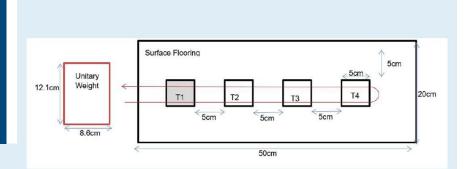
- Freeze Dryer load and unload manually
- Cleaning of Rabs and Isolators prior to disinfection



CS MASTERFILE EXAMPLE FOR FILLING PROCESS OF VIALS

1. Process Step	2. Function	3. Source of Contamination	4. Potential Failure	5. Effect	6. Frequency/Occurence	0	7. Severity	S
Filling process	Intervention for spill and broken vial	Material	Particle and fiber reaching critical filling area	Potentially contaminated vials with foregin matter	Operation performed several time per batch.		High -Med	
	cleaning	Personnel	Microbial content realeased in filling area	Microbial contamination in Class A area	Operation performed several time per batch.		High	

8. Detectability PoD	D	9. Proximity to Critical Area	RPN	10. Method To control de Hazard	11. Document	12. Corrective Actions	13. Current Status	14. Comments
Low		Machine non- contact parts but close to direct contact parts		Train operators on SOP compliance frequently to ensure minimal use of wipes	SOP NNXX V-#	See operators performing intervention.	Under review Completed	
Very Low		Machine non- contact parts but close to direct contact parts		Use 400/600 mm gloves and Sanitize freque Use high retention fabric in garment arms	SOP NNXX V-# URS CRGXX V#		Completed Under review	



Qualifying Disinfectants

- Wider focus to complement surface coupon testing EN13697 with test that simulate practical application.
- EN 16615 (limited reach ... but brings some light)
- Combination of contact time requirement + drying time under real conditions lead to require mechanical action to complement the action of certain biocides.

Wiping

Impact of Mechanical Action in Microbial removal and carry over. Lessons from EN-16615. Impact

Effectiveness of residue removal with different wipe materials and impact in day to day activities

Over simplification vs task effectiveness: when one wipe for all is not the right choice

Risk of particle contamination

Number of wipes

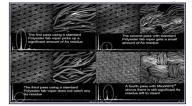
Material particle and fibres shedding

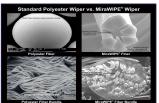
Risk of microbial contamination

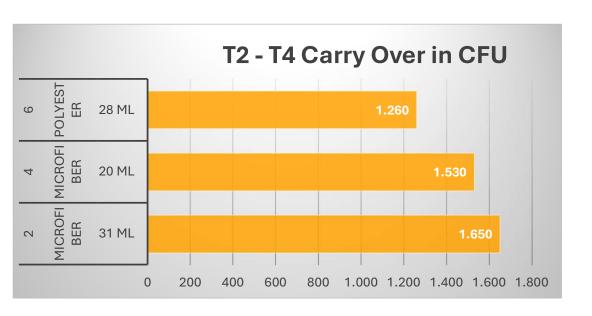
Duration of intervention

Repetition

Carry over


Example for $6\% H_2O_2$ with 5 minutes contact time (*Realistic* under LAF)




- Achieving maximum kill rate requires both contact time and mechanical action to meet the objectives.
- Advance materials provide extra efficacy in bioburden reduction

Typical EN 13697 Log reduction at that time below 1,5

 Increased risk of carry over of microbes if the biocide chemical cannot kill completely.

Detail analysis of SOPs → Risk Based sound practice in day to day activities:

- · From clean to dirty /HACCP
- Unidirectional passes with overlapping.
- Frequent Wipe disposal with minimal contact with hand.
- Sanitize hands thoroughly and use mechanical action in the gloves if possible.

Thank you! <u>alvaro.yepes@alsico.es</u> www.vestilab.com

See you in Linked In

