Technical Report No. 48
Moist Heat Sterilizer Systems:
Design, Commissioning, Operation, Qualification and Maintenance
Agenda

• Taskforce members and background
• TR 48 history and purpose
• Brief description of each section
• Key topics
HELP!!!
Taskforce Members

- Kimberly Brown, Amethyst Technologies, LLC
- Linda Graf, Pfizer-Validation
- Michael Guyader, Lonza-Validation
- Matt Hofacre, STERIS-Project Management
- Richard Kettlewell, GSK-Validation
- Colin Meldrum, Ciba Vision-Engineering
- Ron Nekula, Bayer-Engineering-Task Force Co-Leader
- Anton Ponomarenko, Bayer-Engineering
- Cody Riley, Amgen-Engineering
- Christopher Smalley, PhD, Merck-Validation-Task Force Co-Leader
- Victor Tsui, cGMP Associates-Engineer
TR No. 48 provides an engineering perspective on moist heat sterilizer systems with respect to:

- Development of user requirement specifications that are derived from load characterization
- Sterilizer design, installation, cycle development and verification
- Facilities considerations
- Maintaining the validated state of the sterilizer

- Born from PDA TR 1
- Started June 2007-Completed May 2010
Outline

Section 1 – Introduction
 ❖ Purpose and Scope

Section 2 – Glossary

Section 3 – Sterilization Process
 ❖ Saturated steam
 ❖ Air-Overpressure
 ❖ Decontamination
 ❖ GMP vs. Non-GMP
Outline

Section 4 – Comprehensive Sterilizer Design
 ❖ URS
 ❖ Functional and Design Specifications
 ❖ Appendix A

Section 5 – Equipment Verification and Qualification
 ❖ FAT
 ❖ IQ/OQ
 ❖ Appendix B
Outline

Section 6 – Cycle Development
- Porous/Hard Goods Loads
- Liquids
- Terminal Loads
- Optimization

Section 7 – Ongoing Control
- Maintenance
- Calibration

Module 8 – Documentation
- Appendix C
Technical Report No. 48 follows a lifecycle approach for the specification, design, testing and qualification of moist heat sterilizer systems that includes change control and quality risk management programs.
Validation Lifecycle Activities

- **User Requirement Specification** (Section 4.1)
- **Risk Analysis**
- **Functional Requirement Specification** (Section 4.3)
- **Detailed Design Specification** (Section 4.4)
- **Supplier Control System Bench Testing**
- **Equipment Qualification (IQ/OQ)** (Section 5.2)
- **Site Acceptance Testing** (Section 5.1.2)
- **Factory Acceptance Testing** (Section 5.1.1)
- **Sterilizer Constructed, Tested and Documentation Provided**
- **Commissioning and Qualification (Section 5.0)**
- **Performance Qualification and Continuing Lifecycle Management** (Technical Report No. 1)
- **Cycle Development** (Section 6.0)
• ISO 17665-Sterilization of healthcare products-Moist Heat-www.iso.org
• ISO 11134- Sterilization of health care products – Requirements for Validation and Routine Control-www.iso.org
• ISO 11138- Sterilization of health care products -- Biological indicators-www.iso.org
• ISO 11140- Sterilization of health care products -- Chemical indicators-www.iso.org
• HTM 2010-Health Technical Memorandum Sterilization (UK)-www.dh.gov.uk
• EN 285-Sterilization-Steam Sterilizers-Large Sterilizers-shop.bsigroup.com
• Principals and Methods of Sterilization in Health Sciences, John, J. Perkins, Second Edition-Available on Amazon.com
• Biosafety in Microbiological and Biomedical Laboratories (BMBL)-CDC/NIH, 5th Edition-www.cdc.gov
• ASME BPE-2009-Bioprocessing Equipment-Section SD4.14-www.ASME.org
• GAMP 5-ISPE-www.ispe.org
Section 3-Sterilization Processes
Steam is the ideal sterilant for items that can withstand moisture and high temperatures.

Late 1800’s

1900-1950

1950-1980

1980-1995

1995-Today
Sterilization Process

Simple is better
Design for intended use

<table>
<thead>
<tr>
<th>Sterilization Processes</th>
<th>Heat Transfer Rate</th>
<th>Circulation Required</th>
<th>Temperature Distribution Challenges</th>
<th>Load Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturated Steam Gravity Prevacuum</td>
<td>High</td>
<td>No</td>
<td>Low</td>
<td>P/HG & Liquid Loads that do not require a total pressure greater than the saturated steam pressure</td>
</tr>
<tr>
<td>Steam-Air Mixtures</td>
<td>Function of steam to air ratio and flow velocity.</td>
<td>Yes</td>
<td>High</td>
<td>Liquid and potentially some P/HG loads that require a total pressure greater than the saturated steam pressure</td>
</tr>
<tr>
<td>Superheated Water</td>
<td>Water Spray with air over pressure, moderately high, function of flow velocity</td>
<td>Yes</td>
<td>Moderate</td>
<td>Liquid loads that require a total pressure greater than the saturated steam pressure</td>
</tr>
<tr>
<td></td>
<td>Water Submersion with air over pressure, high, but function of flow velocity</td>
<td>Yes</td>
<td>Moderate</td>
<td>Liquid loads that require a total pressure greater than the saturated steam pressure</td>
</tr>
</tbody>
</table>
Decontamination Processes

- Sterilizers used for decontamination processes such as laboratory or manufacturing waste should be designed appropriately for the Biosafety/Category rating of the hazard present in the load.
- Biological safety levels (BSL) of the biological materials should be assessed.

<table>
<thead>
<tr>
<th>Biosafety/Category Level</th>
<th>Sterilizer Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No sterilization of waste is required</td>
</tr>
<tr>
<td>2</td>
<td>A sterilizer with a make-safe (effluent decontamination) cycle must be readily accessible, normally in the same building as the laboratory</td>
</tr>
<tr>
<td>3</td>
<td>A sterilizer with a make-safe cycle should be preferably situated within the laboratory, but one must be readily accessible in the laboratory suite</td>
</tr>
<tr>
<td>4</td>
<td>A double-ended sterilizer with interlocking doors with entry in the laboratory and an exit in a clean area must be provided</td>
</tr>
</tbody>
</table>
DECONTAMINATION CYCLE
(EFFLUENT DECONTAMINATION CYCLE)

STANDARD STEAM FLOW

- JACKET
- STEAM ENTERS (DURING PURGE, PRE-STEAM PULSES, HEAT-UP, AND EXPOSURE)
- STERILIZER CHAMBER
 - CONDENSATE AND GASEOUS EXHAUST EXITS
- TEMP PROBE
- PUMP (OR EJECTOR)

- TO BUILDING DRAIN SYSTEM

STEAM FLOW
Decontamination Processes

- When decontaminating hazardous waste, other consideration may be:
 - wall seals
 - drain connection
 - filters
 - decontamination for maintenance
 - Regional regulatory agency variation

(Section 3.3)
It is commonly understood that a “GMP sterilizer” is a unit designed for moist heat sterilization, and built in accordance with current pharmaceutical industry sanitary design standards.

(Section 3.4)
"Non-GMP" sterilizers are generally used for sterilization of items not used for processing product, product contact items, microbiological test items or items contacting primary product packaging. These sterilizers may include some "GMP" features, but may not have the precise control or recording of temperature and pressure that "GMP" sterilizers provide.
GMP and Non-GMP Comparison Chart

<table>
<thead>
<tr>
<th>GMP Sterilizer</th>
<th>NON-GMP Sterilizer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical applications include sterilization of products used in the testing or manufacturing of drug products, and terminal sterilization of liquids in sealed containers.</td>
<td>Typical applications include sterilization of products used for laboratory work (not supporting a production area or product testing) or sterilization of waste materials prior to disposal.</td>
</tr>
<tr>
<td>Piping and chamber are designed to accommodate clean utilities such as pure or clean steam and process air. This includes stainless steel clamped and welded designs, proper slopes and deadlegs.</td>
<td>Piping and chamber are designed as appropriate (e.g., copper piping) for the sterilizer’s intended use.</td>
</tr>
<tr>
<td>Materials of construction are compatible and appropriate (e.g., non-particle generating) with products and processes ensuring no contamination (e.g., product or environmental). May be supported by certificates of inspection and traceability.</td>
<td>Materials of construction appropriate (e.g., ensure no adverse reaction with load items to be sterilized) for the sterilizer’s intended use.</td>
</tr>
<tr>
<td>Product contact utilities (e.g., water, steam, air) supplied to the sterilizers are suitable for its intended use and meet applicable Compendial expectations.</td>
<td>Load contact utilities (e.g., water, steam, air) supplied to the sterilizer are suitable for its intended use.</td>
</tr>
<tr>
<td>Control and monitoring systems meets regional regulatory expectations for data security and integrity</td>
<td>Control and monitoring systems data security and integrity meets internal organization requirements</td>
</tr>
<tr>
<td>Temperature monitoring and control devices (e.g. drain probes) are independent of one another.</td>
<td>Temperature monitoring and control may be from a single device.</td>
</tr>
<tr>
<td>Performance meets requirements and specifications with Quality Unit oversight is expected.</td>
<td>Performance meets requirements and specifications. Quality Unit oversight may not be required.</td>
</tr>
</tbody>
</table>

(Section 3.4)
Section 4-Comprehensive Design (Appendix A)
Design Qualification Example

User Requirement:
• Must be able to drive in the rain while seeing the road clearly.

Functional Requirement:
• A mechanical wiping system will be implemented that does not cause damage to the windshield and can accommodate differing weather-related rain loads. An area of the windshield will be cleared providing adequate forward viewing.
Detailed Design

- Manufacture a flexible carbon steel wiper blade, 20 inches in length, clad in EPDM rubber and shaped to match the profile of the windshield.

- The blade will be attached via a movable hinge to a carbon steel driver arm 24 inches in length protected from the elements by powder coated paint and attached to an oscillating motor of adjustable speed causing the arm and blade to traverse across the windshield through a 180° arc.

- Contact between the rubber blade and the windshield must be maintained throughout the full range of motion and a minimum effective clearance path of 80% of the windshield area is required.

- The speed of the arc oscillation must be controllable by the driver within the vehicle at variable speed up to 1 cycle per second.
Prior to selection, users should ascertain:

• What are the area/process requirements?
• How will the sterilizer be used – Hard goods? Finished filled parenterals? Liquid loads? Decontamination?
• What are the sizes of the largest items and possible load density?
• What are the specific requirements for the sterilizer (i.e. control/operation)?

(Section 4.1)
Sterilizer Design

Equipment and Process Considerations

• Cycle time and throughput requirements
• Load configuration (e.g., item size, type and number of loads)
• Loading and unloading requirements (e.g., walk-in or reach-in)
• Specify location, number, size and type of temperature probes ports for validation studies
• Determine if a backup door gasket is required and Door gasket medium (e.g., clean steam or pharmaceutical air) requirements.

(Section 4.1.2)
Sterilizer Design

Equipment and process considerations

• Porous/hard goods load
 – Air removal/Steam Saturation
 – Vacuum pulses/holds
 – Rates
 – Drying
 – Cooling

• For liquid loads
 – Air removal uniform heating
 – Steam/Water Air Mixture
 – Lethality vs. Product Integrity

(Section 4.1.2)
Sterilizer Design

Functional Design Considerations

- **Media Bottle Example:**
 - *What features do I need to make the unit function based on the URS?*
 - *URS-I want to sterilize 200 media bottles per day. Media bottles are glass and sealed with a plastic cap. I need to capture data for validation records.*
 - Chamber - *Throughput, time temp, cooling*
 - Loading Equipment - *rack, transfer cart, load cart*
 - Cycle type - *time/temp, Fo, overpressure, cooling*
 - Utilities - *clean steam/house steam, water, air, electrical*
 - Data - *electronic, Paper, remote historian*

(Section 4.3)
Sterilizer Design
Detailed Design Specification

• Appendix A
 • Basic elements common to all sterilizers—chamber, piping, vacuum, steam source
 • Specific Requirements
 • Specific controls and instruments
 • Materials
 • Control type (proportional or on/off)
 • Door Design
 • Filters
 • Documents

(Section 4.4)
Sterilizer Design

Instrumentation and Controls Considerations

A local control panel may include:

- start / stop
- emergency stop
- door control
- pressure indication (chamber, jacket)
- temperature indication (chamber, jacket)
- a local printer provides numerical data of the cycle
- a chart recorder that provides a graphical representation of the cycle
- audible / visible alarm indicator

(Appendix A)
Sterilizer Design

Control System Considerations

• How complex or simple a control system is needed. Describe the control system requirements in terms of manual, semi-automatic and automatic operation.

• Possible interfaces of the control system with other systems available in the area
Data collection should be based on company requirements (e.g. local printer report, network printer report, building control system report, historical trending).
Details of physical environment should be considered prior to sterilizer specification. Considerations include:

- Maximum height, width and depth to fit through doorways
- Weight bearing capacity of the floor
- Area environmental classification (loading and unloading side(s))
- Unloading requirements - single or double door
Facility Design (4.1.1)

Utilities Considerations (Appendix A)

- **Steam:**
 - Plant steam
 - Clean/Pure steam
 - Steam condensate (drain, return)

- **Electrical**

- **Air**
 - Instrument
 - Process
Facility Design (4.1.1)

Other Considerations (Appendix A)

- Floor Drain
- Exhaust hood/HEPA filter in the load and unload side
- Loading and unloading environment should meet requirements of the process as well as local applicable regulations
- Pit/Floor Mounting
- Seismic
- Rigging modifications (split construction, doors, walls, turns, fixtures)
- Wall Seals
Facility Design

Sterilizer Example:
Load and unload areas are classified
Facility Design

Sterilizer Example: Items are sterilized prior to removal from hazardous area

- Unload
- Non-Contained Area
- Wall Seal
- Service Access
- Load
- Contained Area
Section 5 Equipment Verification & Qualification
Equipment Verification and Qualification

Stage 1: Process Design
- URS
- FS
- DS

Plan/Design

Stage 2: Process Qualification
- FAT
- SAT
- IQ
- OQ

Construct

Stage 3: Continued Process Verification
- PQ

Install

Verify

Validated

Production

Risk Assessment

Risk Review and Mitigation

Engineering
- Engineering Change Management

Commissioning

Ongoing Control
- Change Control/PM

IQ/OQ Report

Equipment Verification and Qualification

Appendix B

<table>
<thead>
<tr>
<th>Task/Action/Activity</th>
<th>FAT</th>
<th>SW</th>
<th>SAT</th>
<th>IV/IQ</th>
<th>OV/OQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirements, Specifications and Test Plans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vendor Quality Plan</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>User Requirements Specifications</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Functional Requirements Specifications</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detail Design Specifications</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Equipment Qualification Plan</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Factory Acceptance Test Plan</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site Acceptance Test Plan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Supplier Documentation to Support Verification / Qualification Activities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operation and Maintenance manuals</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Parts/component list with catalog cut sheets</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment arrangement diagrams (skid)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment arrangement diagrams (site installation)</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Diagrams for accessories (e.g. loading carts)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Process and Instrumentation Diagrams</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>System performance calculations</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Pressure vessel certification report (e.g. ASME U1 form)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Material certificates for product contact parts / components</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Weld logs and inspection records for sanitary piping</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Slope checks and inspection reports</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Cleaning and passivation records for product contact materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure relief device certification</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Leveraging the FAT

It is commonly recognized that testing executed according to GEP can make a significant contribution to validation exercises.
Equipment Verification and Qualification

- Consideration for leveraging FAT
 - Acceptance approval (Quality standards)
 - Record keeping
 - Deviations
 - Control system revisions
 - Facility/Vendor Audits

- Potential items to leverage
 - Drawing reviews
 - Alarm tests
 - Basic cycle sequencing
 - Software tests
Steam Quality Testing should be conducted prior to Dynamic Equipment Qualification (OQ)

Steam quality is determined through physical, chemical and endotoxin testing.
Tests include:

- non-condensable gases
- super heat
- dryness fraction for porous load sterilizers

(Section 5.2.1.1)
Principles of Steam Sterilization

Air is generally a deterrent to sterilization

A film of air only 0.0254mm thick offers the same resistance to the flow of heat as 1mm of water, 104mm of iron and 500mm of copper

Possible sources of air in chamber:

- Leak (during vacuum) in piping or door gasket
- Insufficient prevacuum
- Air entrained in steam
- Add air detector

Connecting People, Science and Regulation®
Principles of Steam Sterilization

Wet Steam
- Has less energy than dry steam and it can cause wet loads
- The packaging used for sterile products bacterial retentive properties will be adversely affected by moisture.
- Caused by improper header or steam supply system.
Superheated Steam

- Temperature above its boiling point for its pressure.
- Gas that will not condense until its temperature drops to its boiling point.
- Produced as the result of excessive pressure drops.
Steam Quality Testing

(Section 5.2.1.1)
Section 6-Cycle Development (Optimization)
Sterilization Process Cycle Development

Cycle development is the process of determining the physical parameters of the sterilization cycle that will be used to sterilize the component and/or equipment in a defined load pattern.

The goal of the cycle development effort is to provide “a proven acceptable range” of critical parameters that will result in a product/material that is both sterile and functional after the sterilization process.
Cycle Optimization Table - Section 6

<table>
<thead>
<tr>
<th>Phase (Possible Load Type)</th>
<th>Saturated Steam Processes</th>
<th>Air Overpressure Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat-Up</td>
<td>Vacuum assisted or Forced Air Purge: Many sterilizers have a purge cycle programmed as the first step in porous/hard goods cycles. Pulses can be made more efficient by pre-empting them with a gravity purge. This may also reduce wear and tear of the pump system as well as remove condensate in the load.</td>
<td>The rate of heat up and pressurization should be carefully controlled to prevent the liquid from boiling while removing the air from the chamber and head space of the container. Gravity purge: Time and pressure can be varied during development studies.</td>
</tr>
<tr>
<td>Pulses: Alternating vacuum pulses and steam charges are used to condition the load prior to the exposure phase of the cycle. The number of pulses are load type dependent, typically 1-3 pulses are used for hard goods air removal; whereas, mixed or porous loads may require additional pulses.</td>
<td>Large and numerous steam supply and drain ports will facilitate faster and more effective air removal. During development, determine what temp to close vent(s) but leave open as long as possible.</td>
<td>Visual confirmation of container pressurization during the cycle may be helpful in establishing parameters during development.</td>
</tr>
<tr>
<td>Vacuum depth: This parameter directly affects the amount of air remaining in the load. To optimize air removal for porous/hard goods heat-up generally begins with a deep vacuum pulse followed by a steam charge.</td>
<td>Since air overpressure is controlled, many are similar to the SAM process. The following parameters are those specific to this process.</td>
<td>Ensure any trays used are adequately perforated to ensure steam/air/water circulation.</td>
</tr>
</tbody>
</table>
Sterilization Process Cycle Development

Hard Goods-Example

- Air removal from the chamber and load
- Component-mapping studies-TC placement
- Load Patterns
- Leak Rate Tests
- Warm-up cycles
Temperature and Measurement Instrumentation Considerations:

- Use of an appropriate thermocouple (TC) wire
- TC wire placement in the chamber or items should not impede steam flow
- Use TC wire of the smallest practical diameter with consideration for application and risk to data integrity
- Recording device accuracy
- Number of available data acquisition ports
- Data collection frequency (scan rate)
Load Considerations
Sterilization Cycle Phases

Pre-Cycle

- LEAK RATE TEST

Heat Up Phase
Pre-Conditioning

- PULSED AIR REMOVAL

Exposure Phase

- EXPOSURE

Cool Down Phase
Post-Conditioning

- VACUUM DRYING

- W PULSED DRYING

- FAST AND SLOW EXHAUST

Time/Temp F_0

Wrapped Hard Goods

Porous Goods (Stoppers)

Metal, Vented Liquid Loads

Porous/Hard Goods (wrapped)

Vented Liquid Loads

Considerations
Sterilization Cycle Phases

- Load Considerations
- Sterilization Cycle Phases
- Pre-Cycle
- Heat Up Phase
- Pre-Conditioning
- Exposure Phase
- Cool Down Phase
- Post-Conditioning
- Wrapped Hard Goods
- Porous Goods (Stoppers)
- Metal, Vented Liquid Loads
- Time/Temp F_0
- Considerations

- Load	
 - Considerations
- Sterilization	
 - Cycle
- Phases

Connecting People, Science and Regulation
Cycle Optimization
Saturated Steam Processes

Considerations During Heat Up
- Vacuum Assisted Air Purge
- Number of pulses
- Vacuum Depth
- Pressure
- Rate of vacuum or pressure change
- Hold Time
Minimizing Equilibration Time

- Time from achieving sterilization temperature in the chamber and achieving sterilization temperature in the load
 - Steam pulses during Heat Up ‘condition’ the load

Fluctuation in Chamber Temperature

- How quickly does the controller respond?
- Are you maximizing the capability of the proportional valve?
Considerations During Drying

Dryness Assessment

- How dry does your load need to be?
- Deep vacuum lowers the boiling point, but can your load withstand it especially with wet packaging/wrappings?
- Insure your vacuum is relieved by filtered air and not steam
- Leave heat on the jacket to provide radiant heat for drying
Using Temperature Profiles

- Cycle Optimization uses temperature profiles to determine the adequacy of air removal. Alternating vacuum and steam pulses remove air which, together with steam quality, determine the optimum cycle.

- A mixed load of porous and hard goods which includes filters, valves, tubing and open containers is demonstrated.
Cycle Optimization – Example

Problem with Heat Uniformity - Initial

- Poor Air Removal in 10" Filter Core, Bottom of 30" Core, and 30" Housing (Non-uniform heating)
- Poor Steam Penetration after final pulse resulting in slow heating of 10" Filter Core

Ramp-Up: Non-Uniform Heating of Chamber and Penetrated items

Exposure Phase
Problem with Heat Uniformity – Initial

• The slowest to heat area lags behind the other locations during early heat-up

• Corrective Action: vacuum level was increased
Problem with Heat Uniformity - Intermediate

Deeper Vacuum and Increased Ramp-up Time

Improved heating from better air removal. Needs more improvement.

Poor equilibration time. The cycle needs additional optimization. Possibly long vacuum hold and additional pulses.
Problem with Heat Uniformity – Intermediate

- Drawing a deeper vacuum and increasing the ramp-up time improved the profile, however the cycle still needs significant improvement
- Adjustments are made to steam pressure, vacuum and hold times
Final Cycle - Optimized

Uniform heating of the load items
Sterilization Process Cycle Development

Liquid Cycles
- Load uniformity in heating
- Fo sterilization-(no over-cook)
- Overshoot
- Cooling-jacket, spray, fans
- Air-overpressure-during cooling-or entire cycle-Partial pressure liquid and vapor
Steam-Air Mixture Process Cycle

TEMPERATURE / PRESSURE

- Chamber Pressure
- Chamber/Drain Temperature
- Load Temperature
- Atmospheric Pressure

TIME

- Chamber Heat Up
- Exposure
- Chamber Cool Down
Sections 7 and 8 Ongoing Control/Documentation
On-Going Control

Requalification

- A procedural process that requires a written protocol before performance of a test
- Should be performed on a defined periodic basis
 - Annual or 3-4 months depending on criticality of the process.-Risk based
- Empty chamber studies evaluate locations throughout a sterilizing unit to confirm uniformity of temperature and pressure conditions
 - Trend the temperature studies
On-Going Control

Sterilizer System Maintenance

- Ensure the equipment is maintained in its qualified state
- Maintenance planning should include what, when, and how to perform preventive maintenance
- Maintenance should be performed in conjunction with calibration
- Make sure you have vendor recommendations and follow them
- Predictive maintenance
On-Going Control

Sterilizer System Maintenance

- Maintenance planning may typically include:
 - Cleaning of the chamber, racks, shelving, and door
 - Replace door gasket(s)
 - Vent filter is sterilized and/or replaced periodically
 - **Steam traps cleaning and functional verification**
 - Check and replace valve seals/diaphragms
Calibration

- Detect and report all deviation from specified calibration tolerance limits
- May include adjusting the instrument, or a measurement loop
- Equipment should be calibrated according to a documented program that includes establishing appropriate calibration intervals
- Temp, pressure, transmitters, recorders, controllers
- Two-point calibration
Appendix C - Figure C-1 Documentation

Overall Project Plan and On-Going Control Level
- Validation (Project) Plan
- Change Control Documentation (Such as: Approval and Completion Notification)
- Validation Plan Summary Report
- SOP (Sterilizer Operation and Maintenance)
- On Going Report (Such as: Maintenance and Calibration reports, Revalidation Plan and Report)

Design and Construction Level
- Specifications:
 - DS
 - FS
 - URS
- Purchase Order
- System Manual
- Spare Parts List
- System Drawings (Such as: P&ID, Wiring Diagrams, and Control System Drawings)
- Component and instrumentation Documentation and Cutsheets (specifications)
- Supplier Test Report and Certificates (Such as: Materials of Construction, Welding Inspection, Pressure Test, and Passivation)
- Installer Test Report and Certificates (Such as: Materials of Construction, Welding Certification, Pressure Test, and Passivation)

Commissioning and Testing Level
- FAT
- SAT
- Turn Over Package
- Cycle Development Report
- Cycle Optimization Report

Qualification Level
- Validation Protocols (Such as: DQ, IQ, OQ, PQ)
- Risk Assessment Report
- Validation Report
Thank you

Matt Hofacre
STERIS Corporation
matt_hofacre@steris.com
+1-440-392-7656

Questions/Discussion