PCMOSM (Paradigm Change to Manufacturing Operations)

Process Validation and Verification: A Life-cycle Approach

Peter Levy
PL Consulting, LLC
peter@plevyconsulting.com

NE-PDA
March 14, 2012

©2012 PDA, Inc
Process Validation and Verification: A Life-Cycle Approach

Presentation Contents

• Background and Technical Report Status
• Overview of Process Validation Lifecycle Concept
• Summary of PV Lifecycle Requirements by Stage
 ▪ Stage 1: Process Design
 ▪ Stage 2: Equipment and Process Qualification
 ▪ Stage 3: Continued Process Verification
• Team Members
Background

• Paradigm Change in Manufacturing Operations (PCMO)
 o PDA initiative; launched in 2008
 o Implementation of scientific application of ICH Q8, Q9, Q10
 o Emphasis on “Lifecycle” concept
 o Establishment of “best practice” documents and training
 o Teams currently addressing 16 different topics

• New FDA Guidance Document on Process Validation
 o Draft Guidance in Nov 2008; Final Guidance in Jan 2011
 o Emphasis on “Lifecycle”; “Scientific Justification”; “QRM”
Background

- Previous PDA Technical Reports Related to Process Validation
 - TR 14: Validation of Chromatographic Separations for Protein Purification (1992; updated in 2009)
 - TR 15: Validation of TFF for Biotechnology Applications (1992, updated in 2009)
Technical Report Status

• Team Established in Fall 2009
 • 35 Contributors
 • Representing 24 Companies
• Co-Leaders
 • Scott Bozzone – Pfizer
 • Hal Baseman – Val Source
• General Approach
 • Sub-Teams develop report chapters
 • Teleconferences and Face-to-Face Meetings
 • Review at PDA Meetings & Peer Review
• Status
 • Peer Review completed (40 reviewers; 1100 comments)
 • Final Draft being compiled
 • Publication Target: end Q2 2012
Process Validation Lifecycle Stages

Stage 1 - Process Design:
(Chapter 3)
Product Knowledge
Process Knowledge
Control Strategy

Stage 2 - Process Qualification:
(Chapter 4)
Confirm Process Design
Control Strategy

Stage 3 - Continued Process Verification:
(Chapter 5)
Monitoring Program
Continuous Improvement

INPUT/PARAMETERS

Evaluate for degree of criticality

OUTPUT/ATTRIBUTES

Facility & Equipment Qualification

Critical Process (Input) Parameters + critical quality attributes + additional Testing (i.e. clearance) = PPQ Protocols

Sub-set of PPQ Acceptance Criteria
Post PPQ monitoring and trending
CPV (continued process verification) plan
Quality Systems (ICH Q10) Evaluation

Page 6

Figure from draft Technical Report

©2012 PDA, Inc
TR Organization

- Report organization reflects concepts introduced in FDA January 2011 Guidance
 - Introduction & Glossary
 - **Stage 1 – Process Design**
 - Building Product & Process Knowledge
 - Developing a Control Strategy
 - **Stage 2 – Process Qualification**
 - Equipment & Utilities Qualification
 - Process Performance Qualification
 - **Stage 3 – Continued Process Verification**
 - Tools (Risk Assessments, Statistics…)
 - Examples
Stage 1: Synopsis of Content

Deliverables at the end of Stage 1 listed and discussed

- Quality Target Product Profile (required at start of Stage 1)
- Critical Quality Attributes (with corresponding Risk Analyses)
- Process Descriptions; Flow Diagrams
- Analytical Methods
- Process Characterization Reports (Design Space; Parameter Ranges)
- Risk Assessments and Criticality Determination
- Control Strategy
- Characterization Test Plan
- Scale-up / Scale Down Approach (evaluation of lab models)
- Batch Records (Pilot, Clinical Manufacturing experience)
Stage 1: Development of a Control Strategy

• Elements of a Control Strategy
 ▪ In-Process and Release Specifications
 ▪ In-Process Controls
 ▪ Process Parameter Acceptable Ranges (or Design Space)
 ▪ Performance Parameter Acceptable Ranges
 ▪ Stability (Intermediates, DS, DP, Process Solutions)
 ▪ Raw Material Specifications and Impact of Variability
 ▪ Process Analytical Technology (PAT)
 ▪ Comprehensive Process Monitoring Plan
Stage 2 – Synopsis of Content

Activities included in Stage 2:

- Facilities / Utilities / Equipment Design and Qualification
- Equipment Capability Assessment
- Process Performance Qualification (PPQ)
 - Scale
 - Strategy & Approaches
 - Types of Studies
 - Setting Acceptance Criteria
 - Determining Number of PPQ Batches
 - Sampling, Testing, and Analysis
 - Documentation
Determining the Number of PPQ Batches

Three batches no longer the default number!!

Factors to consider include:

- Level of Risk for Process
 - Process Knowledge
 - Product Knowledge
 - Control Strategy
 - Novelty of Process / Unit Operations
 - Process Fit with Facility/Equipment
- Past experience / track record for organization
- What is being proven / demonstrated
- Statistical metrics being employed (intra-batch variability; inter-batch consistency)
Stage 3: Synopsis of Content

- Aspects of Continued Process Verification
 - Strategy
 - Developing the Process Monitoring Program
 - Data Analysis and Trending
 - Utilizing CPV Data
 - Documentation
 - Addressing Legacy Products
 - Change Control and CAPAs
Stage 1

Draft Initial Plan

Revise Plan Based on Control Strategy

Revise Plan Based on PPQ Data

Formalize or Update Plan

Periodic review to Assess state of control

Stage 2

- Statistical methods
- Data to be trended
- Lab Model Accuracy
- Reporting Frequency

Stage 3

- Update list of parameters / data to be trended

- Set # of batches to re-assess ranges
- Update statistical strategy based on PPQ
- Frequency of data review based on relevant statistical tools
Tools for the Process Validation Lifecycle

• Quality Risk Management
 ▪ Modeling Uncertainty
 ▪ Risk Tools that can be applied to:
 • Process Understanding
 • Control Strategy
 • Facility Design & Verification
 • Raw Materials
 • Commercial Manufacturing and Monitoring (CPV)

• Statistical Analysis Tools
 ▪ Design of Experiments (DOE)
 ▪ Statistical Process Control (SPC) and Process Capability
 ▪ Control Charts
 ▪ Statistical Acceptance Sampling
 ▪ Determining Number of Lots for Stage 2 PPQ
Tools for Analyzing Lot-to-Lot Variability

- Average run length to detect a lot failure
- Selecting range of inter-lot variation to be covered
- Normal tolerance intervals within and between lots
- Statistical Process Control Charts
- Process Capability Metrics
- Lot Conformance Rate at selected confidence level
- Wald sequential probability ratio
- Narrow limit gauging
- Comparison of between and within lot variation
- Demonstrating between lot std deviation at or below target
- Demonstrating lot-to-lot equivalence
Examples – Application of Concepts in the Guidance

- Biotechnology Product (monoclonal antibody)
- Radio-pharmaceutical
- Solid oral dosage form
Team Members

<table>
<thead>
<tr>
<th>Name & Role</th>
<th>Company</th>
<th>Name & Role</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scott Bozzone</td>
<td>Pfizer</td>
<td>Igor Gorsky</td>
<td>Ch 6</td>
</tr>
<tr>
<td>Hal Baseman</td>
<td>ValSource</td>
<td>Alpaslan Yaman</td>
<td>Ch 6</td>
</tr>
<tr>
<td>Julie Spyrison</td>
<td>BioTechLogic, Inc.</td>
<td>Mark Varney</td>
<td>Ch 6</td>
</tr>
<tr>
<td>Iris Rice</td>
<td>PDA</td>
<td>David Reifsnyder</td>
<td>Example</td>
</tr>
<tr>
<td>Regina Pharis</td>
<td>Tech Writer</td>
<td>Steve Duffy</td>
<td>Example</td>
</tr>
<tr>
<td>Peter Levy*</td>
<td>Ch 3 co-lead</td>
<td>John McShane</td>
<td>Co-Lead</td>
</tr>
<tr>
<td>Praveen Prasanna</td>
<td>Ch 3 co-lead</td>
<td>Jose Luis Ortega</td>
<td>Chap 3</td>
</tr>
<tr>
<td>Raj Jani</td>
<td>Ch 4 Lead</td>
<td>Norbert Hentschel</td>
<td>Reviewer</td>
</tr>
<tr>
<td>Panna Dutta</td>
<td>The Medicines Co.</td>
<td>Chris Ames</td>
<td>Reviewer</td>
</tr>
<tr>
<td>Rebecca Devine</td>
<td>Various</td>
<td>Consultant</td>
<td>John Bennan</td>
</tr>
<tr>
<td>Wendy Lambert</td>
<td>Ch 1 + other</td>
<td>Abbott</td>
<td>Morten Munk</td>
</tr>
<tr>
<td>Vijay Chiruvolu</td>
<td>Various</td>
<td>Amgen</td>
<td>Laura Lei</td>
</tr>
<tr>
<td>Kurtis Epp*</td>
<td>Ch 5 Lead</td>
<td>Iolanda Teodor</td>
<td>Reviewer</td>
</tr>
<tr>
<td>Michael Blackton</td>
<td>Ch 5</td>
<td>Kris Barnthouse</td>
<td>Reviewer</td>
</tr>
<tr>
<td>Elizabeth Plaza</td>
<td>Ch 6 Lead</td>
<td>Markus Schneider</td>
<td>Reviewer</td>
</tr>
<tr>
<td>Pedro Hernandez</td>
<td>Ch 6</td>
<td>Victor Maqueda</td>
<td>Reviewer</td>
</tr>
<tr>
<td>Irwin Hirsh</td>
<td>Ch 6 QRM</td>
<td>Joanne Barrick</td>
<td>Reviewer</td>
</tr>
<tr>
<td>EJ Brandreth</td>
<td>Ch 6</td>
<td>Althea Technologies</td>
<td></td>
</tr>
</tbody>
</table>

ISPE Liaisons
Thanks for your attention

Questions?

Comments?