Decon 2.0: Emerging Decontamination Technologies

Vaporized Hydrogen
Peroxide (VHP) and
Chlorine Dioxide Gas
Decontamination
Case Studies:

Peter Harris
Director of Operations
B & V Testing, INC.
800.851.9081
peter@bandvtesting.com

Space Decontamination

- Exposing a confined space to a gas or vapor with sporicidal capability
- Space can be manufacturing or research rooms and/or laboratories, HVAC systems, entire buildings, containment suites, LARs
- Equipment within space i.e. biological safety cabinets (BSCs), laminar flow hoods, incubators, refrigerators, freezers, computers, and other electronic devices

Why Space Decontamination?

- Eradication or sufficient reduction of known bioburden
- Preventative periodic bioburden reduction
- Preventative pre-start up bioburden reduction
- Decommissioning of facility
- Product change

What Defines a Successful Decontamination?

- Bioburden reduction typically demonstrated via 4-6 log kill of bacterial endospore biological indicators (BIs) with controls growing out
- Distribution of disinfectant to all target surfaces including HVAC, through HEPA filters where applicable
- Control of conditions: temperature/humidity/room pressurization

What Defines a Successful Decontamination? contd.

- Containment of fumigant
- Disposal of fumigant via ventilation, neutralization, filtration
- Material compatibility
- Safety all fatally toxic at use concentrations
- Regulatory compliance with FIFRA

Why Gas/Vapor vs. Liquid/Fog

- Limitation of liquid/fogging agents to reach some surfaces vs. gas/vapor, i.e. internal equipment surfaces, porous surfaces, HVAC, interstitial and tough to reach spaces, plenums within BSCs
- Difficulty in uniform application of liquid/fogging agents vs. gas/vapor
- Material compatibility, liquids and corrosion

Why Gas/Vapor vs. Liquid/Fog, contd.

- Difficulty maintaining sufficient contact time for sporicidal disinfectants for liquid/fogging agents vs. gas/vapor
- Difficult to validate with biological indicators with liquid/fogging agents vs. gas/vapor
- Gas/vapor systems can be integrated into facilities
- Gas/vapor systems can be automated

Gas/Vapor Decontamination Options

- Formaldehyde gas
- Vaporized Hydrogen Peroxide
- Chlorine Dioxide Gas

Formaldehyde Gas, Overview and Advantages

- 50+ years of use and data
- Via methylization of DNA
- Typically @ .3 grams/ft3 (NSF/ANSI 49)
 yielding ~ 10,000 ppm
- Rh > 60%, typical ambient temp., target contact time six $\log \ge 6$ hours (NSF)
- Industry Accepted and Validated
- Good excellent material compatibility
- Relatively inexpensive (depolymerization of paraformaldehyde)

Formaldehyde Gas Challenges

- Requires neutralization with ammonium carbonate or bicarbonate
- WHO carcinogen
- Low PEL (.75 ppm)
- OSHA regulated
- Residue
- Not FIFRA compliant

Vaporized Hydrogen Peroxide (H₂O₂)

- Developed early 1990s AMSCO, Steris VHP
- Mechanism oxidation, attacks cell membrane
- Sporicidal (broad spectrum) at low concentrations, typically @ 150 - 700 ppm
- Start Rh < 50%, typical ambient temp., target dosage 6 log typically 250 – 500 ppm-hours (d value ~ 10 min @ 350 ppm)
- Cycle phases: dehumidification, conditioning, decontamination, aeration

Typical Vaporized Hydrogen Peroxide Bio-decontamination Cycle

Vaporized Hydrogen Peroxide (VHP)

By Courtesy of Steris Corporation

Vaporized Hydrogen Peroxide (H₂O₂) contd.

- Good excellent material compatibility with some exception (nylons, galvanized aluminum with prolonged exposures)
- Absorptive materials slow down process
- Internal, external or integrated introduction of VHP
- IDLH 75 ppm; PEL 1 ppm

Vaporized Hydrogen Peroxide (H₂O₂) contd.

- FIFRA-compliant STERIS Vaprox EPAregistered sterilant
- Non-toxic byproducts; no residue
- Multiple generators needed for larger spaces
- Materials must be dry
- Typical cycle time 4 7 hours including aeration
- Integrated concentration monitoring option

Chlorine Dioxide Gas

- US Senate anthrax remediation, food industry, water treatment, medical device, Life Sciences
- Mechanism oxidation, (not chlorination) attacks cell membrane, no chlorine byproducts
- Sporicidal (broad spectrum) at low concentrations, typically @ 100 – 1800 ppm

Chlorine Dioxide Gas contd.

- Start Rh > 65%, typically at ambient room temp., target dosage six log typically 700 1000 ppm-hours (d value ~ 20 min @ 400 ppm)
- Ventilated or scrubbed
- Mild corrosion/discoloring to cold steel, copper, brass ++ H₂0 present; potentially corrosive if Cl₂ present

Chlorine Dioxide Gas contd.

- External introduction
- Low PEL .1 ppm
- FIFRA compliant ClorDisys EPAregistered sterilant
- Scalable
- Integrated concentration monitoring option
- CD gas cycle time 3 7 hours typically (humidification, charge, exposure, aeration)

Field Studies: VHP and ClO₂

Decontamination Planning Issues

- Define purpose and scope: rooms, equipment, HVAC
- Identify the players, area production managers, EH &S, facilities engineering, QC validation, security
- Establish responsibilities
- Select decontaminating agent
- Establish the schedule and ordering
- Write SOPs, fumigation management plan
- Define success: BIs, full PQ, target dosage

Decontamination Planning Issues contd.

- Containment Issues, Ventilation, Circulation, Humidification/dehumidification
- Communication
- Health and Safety Planning and Coordination, PPE, Emergency Providers
- Clean up and release of area

Decontamination Execution

- Prepare area; pre-clean, BI placement, fan distribution, monitor readiness, seal area, safety perimeter, signage
- Reach target temp/humidity; monitor
- Create safety perimeter/signage
- Introduce chemical and bring to target concentration for target exposure time; monitor
- Monitor surrounding areas for leakage
- Ventilate and/or neutralize to below PEL
- Incubate/analyze BIs as specified

Space Decontaminations

- Pharma aseptic production areas
- Laboratory Animal Research areas
- Pilot plant production areas
- Cold Rooms

VHP Case Study: Pharma

240,000 ft³ manufacturing space

VHP Case Study: Pharma Manufacturing contd.

- Emergency scenario
- Two days planning
- 65 rooms
- Emergency remediation
- 66 liters of Vaprox 35%
- Eight STERIS VHP generators
- Twelve technicians/engineers for 3.5 days

VHP Case Study: Pharma Manufacturing contd.

- Issues: old facility, unpredictable HVAC, pressure schemes
- 165 BIs, A and B samples
- 95 Chemical Indicators
- Managing the process:
 QC/EH&S/Facilities

Conditions and Cycle Parameters

- Humidity (RH): 25-40%
- Temperature: 22°C
- Room to Exterior Pressurization: 0.0"w.g.
- Injection Rate: 12 g/min

Pharma VHP Concentration Room

VHP Case Study: Pharma Manufacturing contd.

VHP Case Study: Pharma Results

- All CIs changed color
- 96% BIs ≥ 6 log kill, with remaining ≥ 5 log kill
- Those < 6 log in rooms with VHP loss due to HVAC

Case Study: 20,000 ft³ Pharma Pilot Plant ClO₂ Gas Decontamination

Pharma Pilot Plant ClO₂ Decontamination

Pharma Pilot Plant ClO₂ Decontamination

Pharma Pilot Plant ClO₂ Decontamination Results

Results

All 20 BIsnogrowth

Summary

- Viable alternatives to formaldehyde gas exist for efficacious and safe decontamination of pharmaceutical production space and other space
- It is important to understand the physical properties and behavior of your decontaminant of choice to ensure efficacy and safety
- Different decontaminants may be appropriate for different applications
- Planning is paramount!!

Acknowledgements

- STERIS Corporation, John Klostermyer
- ClorDisys Solutions, Mark Czarnesky

