Process Validation Guide
Regulatory Expectations & Best Practices

Alfredo Canhoto, Ph.D.
Technical Solutions Practice
ProPharma Group
April 15th 2013
Process Improvement?

Grandpa’s Car

Future Grandkid’s Car
Linear Compartmentalization?
Lifecycle Approach
Lifecycle Staged Approach

STAGE 1
PROCESS DESIGN

STAGE 2
PROCESS QUALIFICATION

STAGE 3
CONTINUED PROCESS VERIFICATION

COMMERCIAL DISTRIBUTION
Process Validation Stages

Stage 1
Process Design
- Building and capturing process knowledge

Stage 2
Process Qualification
- Establishing a control strategy
- Design of facility and qualification of utilities & equipment (IQ/OQ/PQ)
- Process Performance Qualification (PPQ)

Stage 3
Continued Process Verification
- Implement control strategy
Schematic of Stages

(New Process or Product)

Stage 1
Process Design

Stage 2
Process Qualification (PQ)
- Design of Facilities & Qualification of Equipment and Utilities
- Process Performance Qualification (PPQ)

Stage 3
Continued Process Verification

Evaluate/Confirm

Changes

Distribute

Ref: Grace E. McNally FDA (Guide Leader) Sept 15, 2010
What does this mean?

• Lifecycle approach – product conception through commercialization

Focusing exclusively on qualification efforts without also understanding the manufacturing process and associated variations may not lead to adequate assurance of quality.

- FDA Guideline Section IIB
Schematic of Stages

(Legacy Process or Product)

Stage 1
Process Design

Stage 2
Process Qualification (PQ)
- Design of Facilities & Qualification of Equipment and Utilities
- Process Performance Qualification (PPQ)

Stage 3
Continued Process Verification

Evaluation/Confirm
Changes
Variation Detected
Distribute

Ref: Grace E. McNally FDA (Guide Leader) Sept 15, 2010
Activities for Legacy Products

• Demonstrate **control over variation** through the examination of data from previously manufactured product

• BEST PRACTICE:
 – Review a minimum of 10 lots over the last 3 years or at least thirty (30) batches
 – Examine data for critical process parameters for each step of the process and include:
 • all in-process testing and QC results
 • final product testing results
 • specifications.
 – Examine data for critical parameters for overall state of control for each batch
1) Define risk based methodology and team structure
2) Define CQA
3) Perform Risk Assessment
4) Define applicable CPP’s
5) Determine analytical process variation
6) Demonstrate variation correlation
7) Establish control strategy
8) Assess data

STAGE 1: PROCESS DESIGN

Expectations

1) Engage Process Development Scientist & Engineers early
2) Get it in writing
3) Ensure scalability
4) Create event driven Process Flow
5) Get an early start on Method Validation

Best Practice
Stage 1: Process Design

Expectations

1) Defined process
2) Completed CPP/CQA Matrix
3) Completed risk assessment
4) Defined control strategy
5) Defined risk reduction plan
6) Summary of test method validation
7) Statistical assessment
8) Process variation

Stage 1 Summary Report

Best Practice

1) Make it accessible
2) Make it searchable
3) Make it clear!
4) Allow amendments
STAGE 2: PROCESS QUALIFICATION

1) Confirm Facility, Equipment, Utilities
2) Develop PPQ Protocol including:
 a) Definition of methodology and team structure
 b) Definition of statistical terms and formulas
 c) Applicable references to stage 1 summary report
 d) Control strategy
 e) Number of batches
 f) Sampling Plan
 g) Create control charts
 h) Acceptance Criteria / Investigation process for both intra and inter batch variability.
 I) Training record
STAGE 2: PROCESS QUALIFICATION

Expectations

3) Train Operations and Analytical Team
 a) Manufacturing Processes
 b) SPC trending
 c) Updated SOP’s
 d) Batch record review
 e) Risk assessment review
 f) CPP/CQA Matrix review

4) Execute Protocol
5) Revise risk assessment and CPP/CQA

Best Practice

1) Plan extra runs
2) Prepare for deviations
3) Follow in-process results closely
STAGE 2: PROCESS QUALIFICATION

Expectations

1) Summary of results
2) Confirm Process Performance value
3) List of CPP’s by Risk Priority Number
4) Control system
5) Determine confidence intervals
6) Justification for reduced testing

Best Practice

1) Compile results in real time
2) Utilize someone well versed in statistical methods
3) Leave a well documented rationale as to which Attributes to monitor and why

Stage 2 Summary Report
Commercial Distribution

• Basis for Commercial Distribution

“Each manufacturer should judge whether it has gained sufficient understanding to provide a high degree of assurance in its manufacturing process to justify commercial distribution of the product.”

FDA Guideline Section IIB
STAGE 3: CONTINUED PROCESS VERIFICATION

Expectations

1) Revise Batch records
2) Establish an SOP / Methodology
3) Revise CAPA / Change control process
4) Utilize CPP/CQA matrix
5) Record and trend CQA batch results
6) Report CQA trends

Best Practice

1) Create a Program
2) Hire a Full Time manager
3) Be proactive!
4) Review OOS, CAPA, Deviations
5) Make results visible to all
6) Bring the Cross Functional Team together – Often
STAGE 3: CONTINUED PROCESS VERIFICATION

Expectations

1) Summary of results
2) Routine monitoring
3) Control system
4) Justification for continued testing of CPP’s

Best Practice

1) More than just annual requalification
2) Analysis of Trends

Process Metrics Report

Annual Product Report
Is there a conclusion?

- Know your process
- Understand your variability
- Build a Control Strategy early
- Establish a lifecycle
- Monitor the process and analyze your results
- Continued process improvement will lead you to the Future!