# Mitigating Raw Material Risk for Supply Chain Continuity

Tom Dinka Doe & Ingalls of North Carolina, LLC

April 23, 2009

## What's driving the focus on risk mitigation?

- Globalization of the supply chain
- Adverse events: e.g. heparin
- Biopharmaceutical industry is maturing
  - Lean manufacturing practices
  - Process optimization
  - Scalability considered earlier
  - Companies want to save \$\$
- Competing demands for raw material resources
- FDA has increased interest in risk mitigation

#### Slide from Deborah M. Autor, Director CDER Office of Compliance, DCAT Mar09

#### Conclusion

#### In a global economy,

- Pharmaceutical industry must bear clear responsibility for the integrity, quality, and safety of their products and all ingredients
- Regulators must work together and adopt a world-wide approach

#### Complacency is <u>NOT</u> an Option

Slide from Richard Friedmand, Director CDER Division Manufacturing & Product Quality, DCAT Mar09

> Pharmaceutical Ingredient Supply Chain – A Shared Responsibility!

#### Manufacturers and Distributors

#### End Users

Are responsible for assuring that ingredients they supply comply with standards/specifications and are not adulterated or misbranded

Are ultimately responsible for the use of appropriate ingredients and assuring ingredient quality at every stage of the supply chain

## To mitigate effectively, we need to understand **total** supply chain risk



Crude oil (or other basic source)





Industrial chemical factory



cGMP repackager



cGMP distributor



Biotech manufacturing



### Systematic vs. Specific Risk

Systematic Risks: affect the majority of your raw materials. Based on market conditions.

**Specific Risks**: affect a segment of raw materials



### Key systematic risks today: Chemical market

- Biotech industry is a small percentage of overall chemical market demand
- Specialty producers still upgrading facilities to meet quality standards
- Chemical industry consolidating
- Chemical industry is a mature industry
- Transparency to original source is major challenge
- Many materials still do not have compendia
- China is a net importer of many chemicals (isopropyl, benzene, acetone, methanol)

## Key systematic risks today: regulatory

- Limited oversight from foreign drug regulators
  - Chemical manufacturers overseas supervised by other agencies
- Limited FDA oversight overseas
  - FDA must be invited onto foreign soil to perform inspections
  - Manufacturer "only" gets weeks advance notice of inspection
  - FDA has new and few foreign dedicated inspectors





### Inspection of Foreign Manufacturing Facilities: 2001 - 2008

#### Industry trends in foreign manufacturing show need for increased inspection capacity

Inspections have not kept pace with growth in foreign facilities



Reference: Globalization: Challenges and Recent Case Studies, Deborah M. Autor, Esq. Director CDER Office of Compliance, excerpt from a presentation given at DCAT 18Mar2009

#### Limited Oversight



Source: Mansell, Pete (2008) . Supply chain globalization weighs heavily on FDA. In-Pharma Technologist.com

## Example of a systematic risks we are currently facing

- Acetonitrile and it's dependence upon the automotive and housing industry
  - Co-produced with acrylonitrile
  - Acrylonitrile is driver of production

#### Specific risk factors—upstream supply

| Risk Factor                                  | Basic Chemical<br>Manufacturer | cGMP Manufacturer /<br>Repackager | Distributor |
|----------------------------------------------|--------------------------------|-----------------------------------|-------------|
| Industry Focus                               | Х                              | Х                                 | Х           |
| Production Capacity                          | Х                              | Х                                 |             |
| Facility location                            | Х                              | Х                                 | Х           |
| Materials source                             | Х                              | Х                                 |             |
| Product demand in all industries             | Х                              |                                   |             |
| Environmental risk                           | Х                              | Х                                 | Х           |
| Geo-political risk                           | Х                              | Х                                 | Х           |
| Financial risk                               | Х                              | Х                                 | Х           |
| Audited quality systems                      | Х                              | Х                                 | Х           |
| Track record with governing body             | Х                              | Х                                 |             |
| Lead time                                    | Х                              | Х                                 | Х           |
| Sole Sourced material                        | Х                              | Х                                 |             |
| Transparency into supply chain               | Х                              | Х                                 | Х           |
| Management of Change                         | Х                              | Х                                 | х           |
| Disaster preparedness                        | Х                              | Х                                 | Х           |
| Buying power of raw materials                |                                | Х                                 |             |
| Ability to maintain acceptable quality level | Х                              | Х                                 | Х           |
| Leverage with suppliers                      |                                |                                   | Х           |
| Alignment with suppliers and customers       |                                |                                   | Х           |
| Storage space constraints                    |                                | Х                                 | Х           |
| Supply chain management expertise            |                                | Х                                 | Х           |



#### Specific risk factors—upstream supply

|         | Risk Factor                            | Basic Chemical<br>Manufacturer | cGMP Manufacturer /<br>Repackager | Distributor |   |
|---------|----------------------------------------|--------------------------------|-----------------------------------|-------------|---|
|         | Industry Focus                         | X                              | X                                 | x           |   |
|         | Production Capacity                    | Х                              | x                                 |             |   |
|         | Facility location                      | Х                              | Х                                 | Х           |   |
| ndustry | / Focus                                | Х                              | Х                                 | Х           | _ |
| 2       | Environmentar risk                     | ^                              | ^                                 | ^           | 1 |
|         | Geo-political risk                     | Х                              | X                                 | Х           |   |
|         | Financial risk                         | X                              | Х                                 | X           |   |
|         | Audited quality systems                | Х                              | Х                                 | X           |   |
|         | Track record with governing body       | Х                              | Х                                 |             |   |
|         | Lead time                              | х                              | х                                 | х           |   |
| Sole-So | ourced Material                        | Х                              | Х                                 | Х           |   |
| >       | Management of Change                   | Х                              | Х                                 | X           |   |
|         | Disaster preparedness                  | Х                              | х                                 | Х           |   |
| Transpa | arency into supply ch                  | nain X                         | Х                                 | Х           |   |
| 2       | Leverage with suppliers                |                                |                                   | X           |   |
| Alig    | Alignment with suppliers and customers |                                |                                   | X           |   |
|         | Storage space constraints              |                                | Х                                 | X           |   |
|         | Supply chain management expertise      |                                | Х                                 | Х           |   |

## Recent Case Where We Have Encountered Specific Risk

- Potash strike and the elimination of source for high quality potassium
  - Not only North American issue
  - All major chemical manufacturers purchasing starting material from Potash Co
  - Effect on Multiple Industries

### Case example: IPA

- Limited number of suppliers produce 1.9 billion lbs crude IPA
  - Dow, Exxon, Shell and Equistar
  - Produced in only three U.S. locations
  - Shell is only Canadian producer of IPA
- Two different processes used to produce IPA
  - Sulfuric acid Oxidation of propylene
  - Hydrogenation crude Acetone
- Grades vary: technical, USP, ACS, semiconductor
- Importance: grade and process impact your production process and suppliers' production impacts your supply chain security

Reference: Chemical Market Reporter (2005). <u>Chemical Profile –</u> <u>Isopropanol.</u>



## Counterfeiting and contamination risk

- Substitution of excipient glycerol by counterfeiters: repeat incidents in Haiti, Panama and Bangladesh
- Counterfeit Heparin supplied by a Chinese manufacturer -Changzhou SPL s



Reference: Mansell, Pete (2008). <u>GMP an unnecessary burden for</u> <u>excipients.</u> In-Pharma Technologist.com.

### **Environmental risk**

- Hurricane Katrina exposed vulnerabilities along the gulf coast: sucrose and caustic soda producers
- Impact on transportation and logistics



## Unforeseen production changes impact availability: Helium

- Many of the world's 16 helium extraction plants are not running at full capacity → supply shortages
- U.S. helium demand up > 80% in the past two decades
- Demand growing > 20% annually in developing regions such as Asia
- Up to 45% increase in cost in two years

## National events affecting Supply Chain logistics

- Olympics in China led to transportation and manufacturing restrictions
- The restrictions started in May ... Olympics were in August
- List 257 chemicals that only authorized firms could sell and transport
- Effects felt all over the world

## Financial Risk – Economic Meltdown

- Chemical factory shut downs
  - Dow consolidating manufacturing facilities
- Major chemical suppliers filling bankruptcy
  LyondellBasell and Chemtura filling for bankruptcy
- Lack of ability to refinance debt
  - Financial concerns on balance sheets



## Planning a risk assessment

- 1. Attain a clear idea of your objective
- 2. Decide on scope
  - Do you plan to analyze all materials or all materials related to a particular project?

#### 3. Involve the appropriate people

- Purchasing, materials planning/management, process development, quality, company leadership, supply chain partners
- 4. Set a timeline
- 5. Set clear & concise goals



### **Prioritizing materials**

#### Map each material to its use

1.



- Determine criticality of material to process
- Rank materials by priority for assessment



### **Prioritizing assessment**





### Create risk mitigation action plan

- 1. Look at materials most significantly out of range first
- 2. Devise immediate actions to mitigate
  - Risk mitigation inventory
  - Approval of alternative source

#### 3. Consider long-term actions to mitigate

- Capacity agreements
- Supplier agreements
- Regular audits

#### 4. Do a cost-benefit analysis

- Cost to mitigate versus cost of failure
- Many options; pick the one with greatest ratio of benefit over cost
- 5. Re-evaluate risks
- 6. Set up monitoring program





#### Initiatives that strike the balance

- Use same raw materials for multiple products
- Initiate Kanban process
- Total chemical management program
- Use consistent set of qualified suppliers

#### Risk

Lean

 Hold additional inventory

•Qualify smart sources

Invest in market intelligence

•Conduct regular audits

- •Minimize inventory
- •Reduce redundancy
- Reduce costs
- •Do the job with fewer people



## Implications of decisions made from the risk assessment

- What are the additional costs associated with your decisions for each part of your supply chain?
- Could there be alternative ways to reduce risk?
- Who should pay for the added costs?
- How does this effect the way you do business with your supply partners?
- Do your supply chain partners lose any flexibility managing their business?

## Takeaways: how to secure your supply chain

- Understand complete supply chain back to basic manufacturer
- Know how decisions impact the supply chain
- Smart sourcing: best decisions start as early as PD
- Biotechnology companies require:
  - complete transparency from chemical manufacturers
  - alignment with supply chain partners with expertise, understanding and capabilities to mitigate their risks

## "Efficiency is doing things right; Effectiveness is doing the right things."

#### Peter Drucker

Contact information for follow up questions:

Tom Dinka tdinka@doeingalls.com (919) 282-1990

