Ethylene Oxide and Radiation Sterilisation

Method Selection and Critical Success Factors

Barry Cox
Steritech Pty

Steritech
Main Sterilization Technologies

Ethylene Oxide (55%)

- Surface sterilant
- Typically 100%
- Sterilize under vacuum
- Process variables include
 - Temperature
 - RH
 - Time
 - Pressure
 - EO concentration
- Preconditioning / Aeration

Irradiation (45%)

- Penetrative sterilant
- Gamma
 - Cobalt 60
 - Alpha particles
 - High penetration
- Electron Beam
 - Accelerated electrons
 - Beta particles
 - Processing speed dependant on power (Kwatts)
 - Penetration dependant on energy / particle speed (MeV)
Criteria to Consider

Validation
- Initial validation
- Cross Plant / Cross Line
- Requalification / Maintenance

Product / Materials
- Material Compatibility
- Packaging
- Electronic Components

Operations / Logistics
- Speed to market
- Processing Cost
- Turnaround Time
- Product Release
- Processing Risks
- Capacity Management
- Residuals

Health, Safety & Environmental
Initial Validation

Ethylene Oxide

- Set out in ISO11135
- Typically takes 8-12 weeks
- Protocol needs to take into consideration
 - Load configuration
 - Placement of internal BI’s
 - EO residuals
 - Product functionality
 - Number of samples
- Changes to product / load configuration

Irradiation

- Set out ISO11137
 - $V_{D_{\text{max}}}^{15/25}$ most common
 - Small # of samples required
 - Methods 1 & 2
 - Larger # of samples required
- Detail on Bioburden
- Typically can be carried out in 3-4 weeks
 - Test of sterility incubation time of 14 days
- Ebeam needs to factor in scatter
Cross Line / Plant Requirements

Ethylene Oxide

• Within same plant need to evaluate process equivalence and may be able to justify reduced validation activity.
 ✓ Capacity
 ✓ Load Configuration
 ✓ Equipment Capability

• With different plant, equivalence often difficult to establish and therefore requires full validation.

Irradiation

• Gamma → Gamma
 ✓ Dosimetric Only

• Gamma → Ebeam
 ✓ Dosimetric
 ✓ Microbiological

• Ebeam → Ebeam (Similar Operating Mode)
 ✓ Dosimetric Only

• Ebeam → Ebeam (Different Operating Mode)
 ✓ Dosimetric
 ✓ Microbiological
Maintenance / Requalification

Ethylene Oxide

- Generally re-qualified every 1-2 years
- Review of
 - Process history
 - Product / packaging changes
 - Equipment changes

Irradiation

- Quarterly dose audits
- Control of routine Bioburden
- Product / packaging changes quicker to qualify
- Changes in orientation
New Product Speed to Market

Ethylene Oxide

- Long validation lead time
- Complex validation
- Extra validation activity to accommodate scale up.

Irradiation

- Quicker validation
- Smaller # of samples for validation
- Product for clinical trials
- Scalable from product development
Processing Cost

Ethylene Oxide

- By Chamber (e.g. 10 Pallets)
- Cycle price dictated by cycle length
- Expensive for small volume loads
- Extra costs may include
 - Extra aeration
 - BI’s
 - Other testing
- Factor in WIP cost due to longer lead times

Irradiation

- By pallet / Carrier / tote or box
 - Easier to manage unit costs
 - Optimize batch size to reduce dosimetry
- Processing cost dictated by density of product
- Factor in lower WIP due to faster lead times
Processing Time

Ethylene Oxide

- Typically 7-10 days
 - Processing: 20-48 hours
 - BI testing: 2 – 7 days
 - Aeration: 0-5 days
 - Some products may require post sterilization processing

- Parametric Release may shorten turnaround time by elimination of BI’s

- Long turnaround times result in increased WIP

Irradiation

- Typically 2-3 days
 - No BI’s to test
 - No Aeration requirements
 - Minimal requirement for post sterilisation processing

- Can be as quick as < 24 hours

- Ebeam
 - Tote or box to box so can be even quicker than gamma

- Quick turnaround time result in less WIP
Product Release

Ethylene Oxide

- Up to 7 days
- Review of Batch record
 - Cycle parameters within specification
 - BI results
 - Aeration Complete
- Parametric release an option for quicker release

Irradiation

- 1-2 days
- Dosimeters
- Certificate of Processing
- Quality review and approval
Processing Risk

Ethylene Oxide
- Batch Process – 1-32 pallets
- Multiple parameters to be controlled and monitored
- Multiple sterilization capability recommended
- Only option is to reprocess or scrap

Irradiation
- Gamma
 - ✓ Pallet / Carrier / tote
- Ebeam,
 - ✓ Tote / box to box
 - ✓ Product orientation
 - ✓ Incremental dose
- Dose is cumulative
- Dose augmentation
- Load presentation
 - ✓ Critical for Ebeam
Capacity Management

Ethylene Oxide
- Lengthy process to add capacity
 - Equipment lead time
 - Commissioning
 - PQ
- Typically 12 – 18 months
- High capital cost

Irradiation
- Quicker lead time to increase capacity

 - Gamma
 - Increase cobalt source
 - Run on extra shifts

 - Ebeam
 - Increase power → Speed up conveyor
 - Run extra shifts
Residuals

Ethylene Oxide

• EO & ECH levels on product must meet limits set out in ISO10993-7.
• Can result in increased processing time to get limits below required limits.
• Influenced by
 ✓ Aeration temperature
 ✓ Materials
 ✓ Product design
 ✓ Layers of packaging

Irradiation

• No known residual issues with irradiation of medical devices.
• Irradiation does not have high enough energy to impart radioactivity.
Product / Material Compatibility

Ethylene Oxide

- Product design
 - Tortuous pathway
 - Dead legs
 - Coatings
- Most materials compatible
- May be issue where product is temperature / RH sensitive
- EO / ECH residuals

Irradiation

- Cross linkage
- Discolouration
- Reduced with Ebeam
 - Shorter exposure
 - Incremental dose
 - Reduced oxidization effects
- Additives to reduce impact of irradiation
Packaging

Ethylene Oxide

• Porous to EO
• May need post sterilization activity of product is RH sensitive
• Packaging validation needs to take pressure changes into consideration.
• Ideally need to minimize layers to facilitate EO penetration

Irradiation

• Can use non-permeable materials
 ✓ Foil pouches
 ✓ No pressure change implications
 ✓ No temperature / RH restrictions
 ✓ Potential for cheaper packaging
• Reduced need for post processing packaging
• Most materials suitable for Ebeam
• Unsuitable materials for Gamma
 ✗ Standard polypropylene – Brittle
 ✗ UPVC – Discolouration / Brittle
Electrical Components

Ethylene Oxide
- Increased risk of source of ignition
- Cycle can be designed outside flammable zone
- May result in longer cycle leading to higher processing costs

Irradiation
- Devices incorporating passive components may tolerate irradiation
- Some electronic components susceptible to irradiation
- Damage is gradual rather than sudden
Health & Safety / Environmental

Ethylene Oxide

- Hazardous Gas
- Occupational exposure
- Facility design
 - Atex
 - Fail Safe
- Emission Control

Irradiation

- Radiological shielding
- Occupational exposure
- Production of small amount of Ozone
- Transportation & control of Cobalt
- Ebeam can be quickly shut down

- Does not impart radioactivity
- No known residuals
Conclusions

• Irradiation offers significant advantages over Ethylene Oxide

• There are limitations with irradiation, but there are strategies to minimise these.

• Electron Beam offers the advantages of Gamma but with fewer of the limitations.
Questions to Ask Yourself

- Am I using the most suitable sterilization method for my product?
 - Was it selected based on availability at the time?
 - Are there other materials that would be irradiation compatible?
 - Has anything changed to make my product capable of using an alternative sterilization method?

- Can I change to a different sterilization method?
 - Is my product compatible?
 - What are the regulatory requirements?
 - How long will it take?
 - Will it be worth the while – Financially and operationally?

- Am I considering the sterilization method early enough in the product design phase?
Thank-you for listening.

Any questions?

Steritech