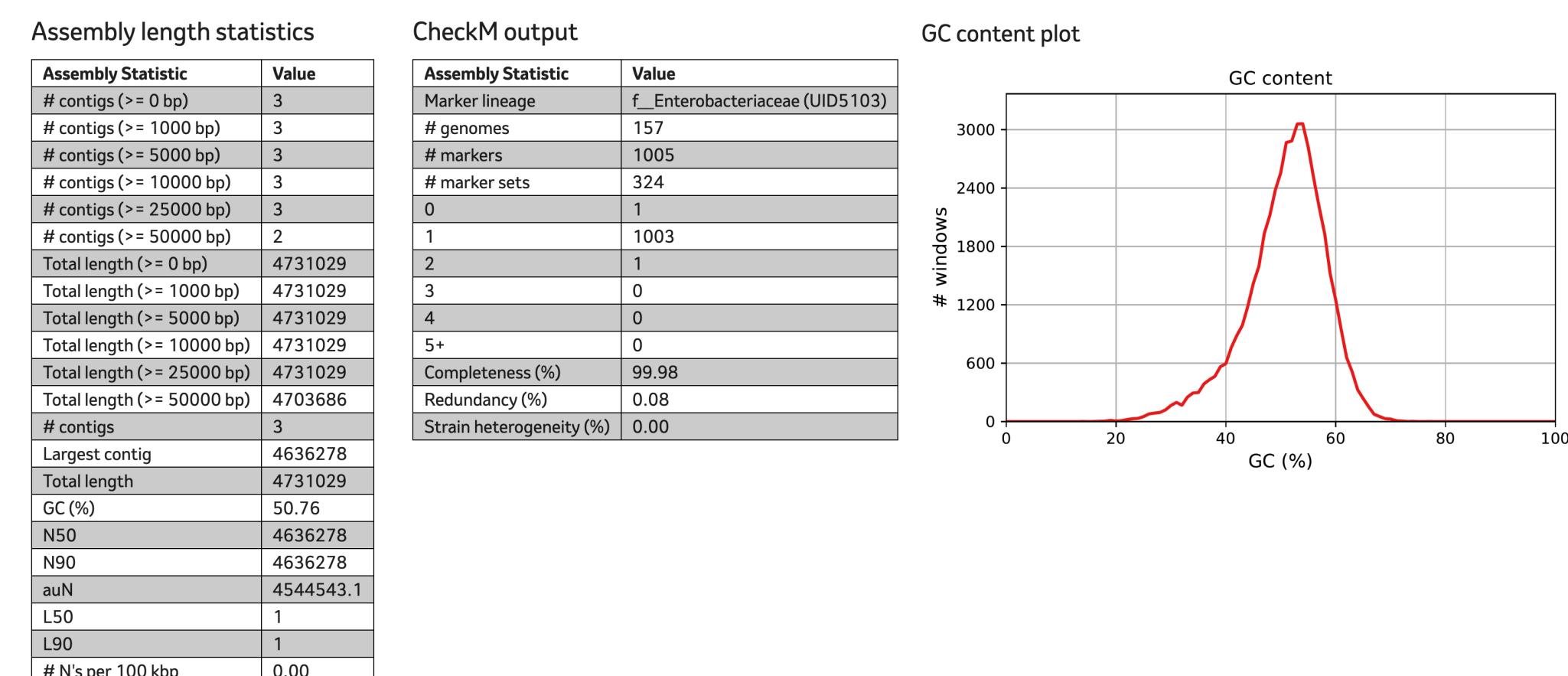


Development of a Rapid, High-Resolution Microbial Identification Platform


Background

- Producing safe medicinal products is dependent on pharmacopeial and conventional methods for identification of microbial contaminants, also known as adventitious agents.
- Genotypic methods for microbial identification use only selective loci covering only small fractions of the genome, limiting taxonomic resolution and missing whole-genome insights.
- Advancements in DNA sequencing technology have reduced the time and cost needed to sequence whole genomes, enabling their use for microbial identification.
- We leveraged Oxford Nanopore whole-genome sequencing (WGS) to develop workflows for rapid, high-resolution, in-house identification of bacteria and yeast.**
 - Our bacterial workflow can differentiate closely related strains of *S. flexneri* and *E. coli*.
 - Our yeast workflow can identify *S. cerevisiae* and *K. phaffii* species.
- We are automating these pipelines as part of Merck's patent-pending ViruScreen platform which enables multi-omic analyses through an easy-to-use web portal.

ViruScreen Platform

- ViruScreen is a patent-pending GMP bioinformatics enablement platform.
- Supports multiple high-throughput sequencing-based analysis pipelines for detection of adventitious agents in vaccine and biologics samples.
- Designed for use by non-bioinformaticians (Figure 1):
 - Web-based
 - User-friendly graphical interface
 - Suggested pre-set parameters tested for efficiency
- End-to-end pipeline execution from simple data upload from the cloud or a local computer, to detailed tabular and graphical summaries of analysis results (Figure 2).
- New features added regularly through continuous development and ongoing testing to verify pipeline functionality.

Figure 2. ViruScreen assembly workflow results summary

Long-Read Whole-Genome Assembly in ViruScreen

- The ViruScreen long-read genome assembly workflow leverages Oxford Nanopore Technologies (ONT) long-read sequencing.
- ONT long-reads span thousands to millions of bases, enabling single-read coverage of large genomic regions in both bacteria and yeast.
- Long reads allow reconstruction of complete or near-complete bacterial and yeast genomes with minimal fragmentation.
- The ViruScreen long-read genome assembly workflow includes quality filtering, trimming and sub-sampling of long-reads, followed by de novo genome assembly, and genome quality and completeness assessment (Figure 3).
- Our bacterial assemblies have near-identical (>99.8%) average nucleotide identity (ANI) to their reference genomes, high completeness, and low redundancy (Table 1, Figure 4).

Figure 3. ViruScreen microbial genome assembly workflow

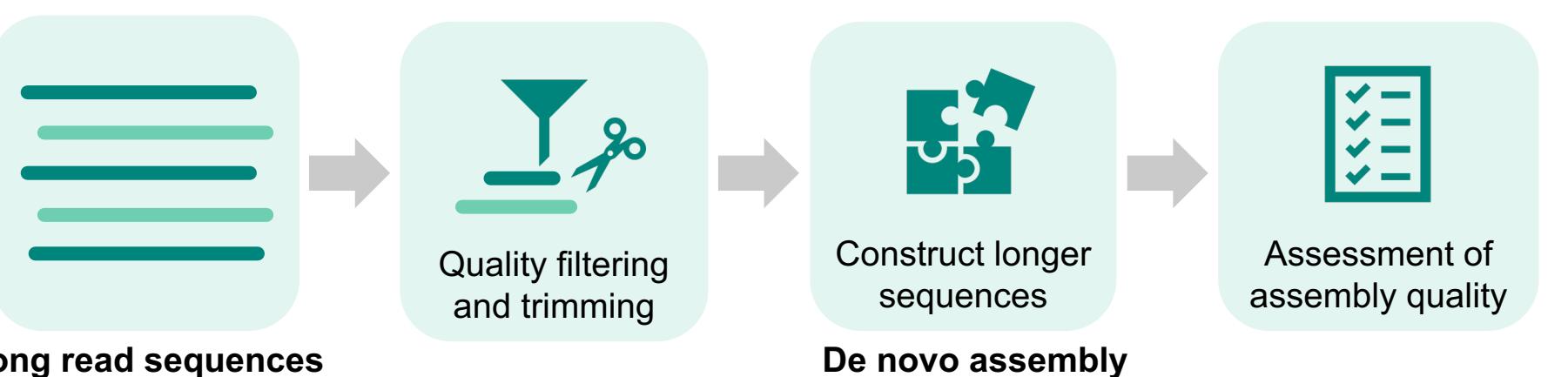
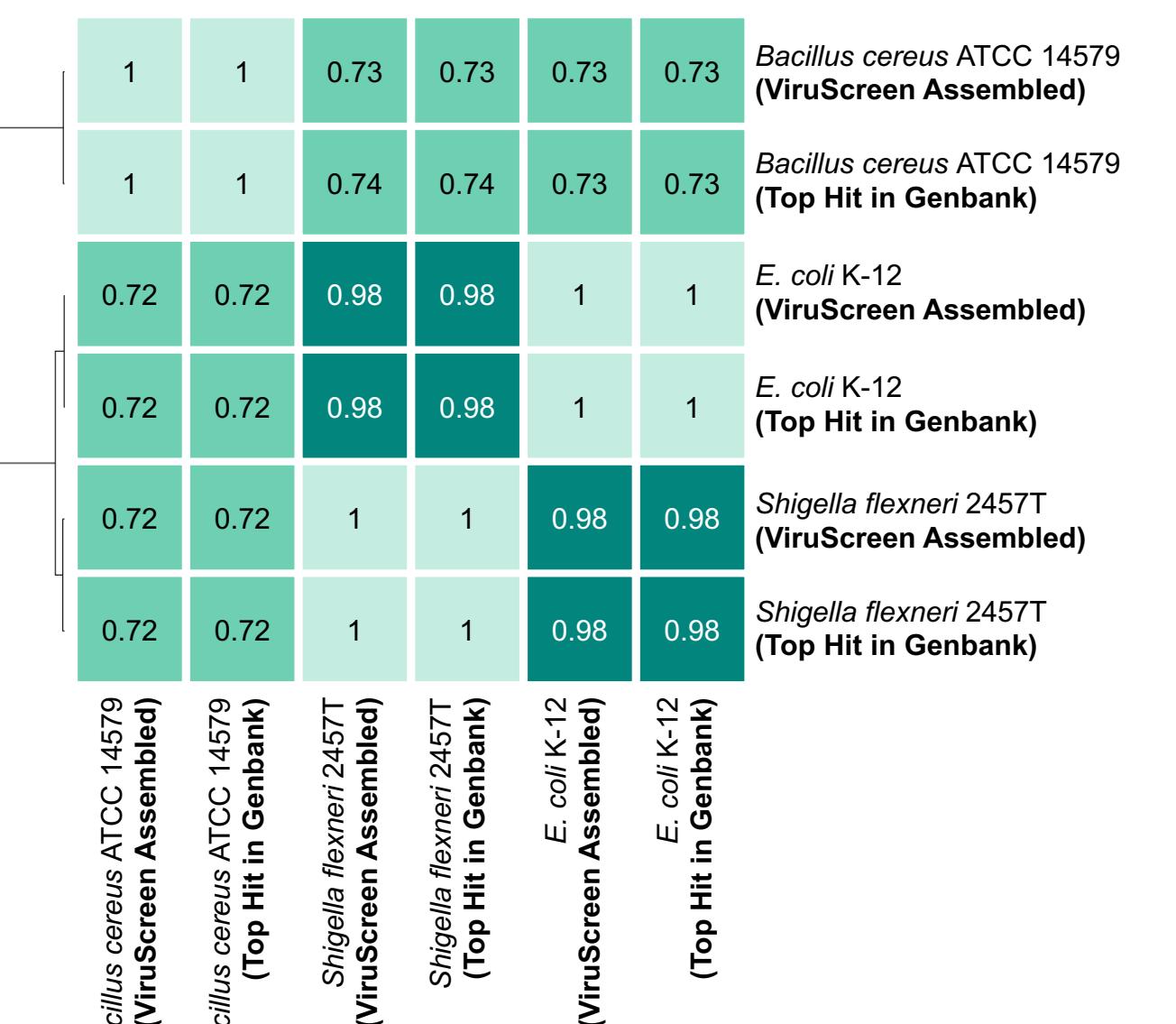


Table 1. ViruScreen bacterial genome assembly quality evaluation

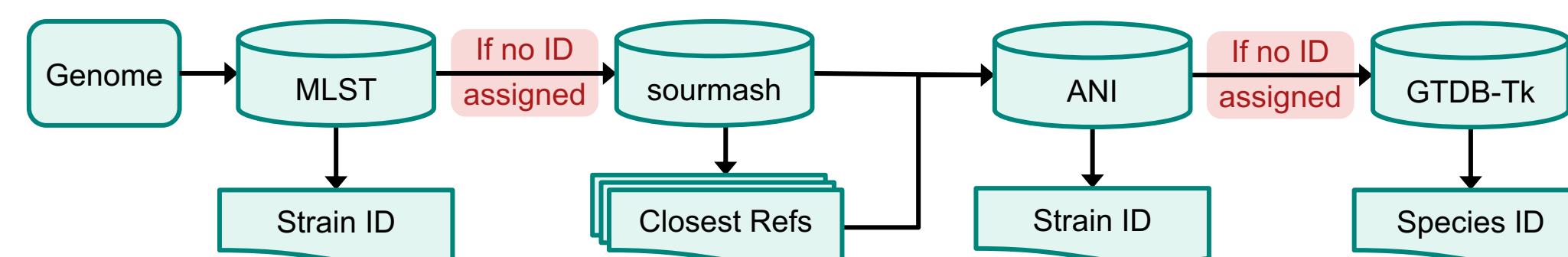
Strain	Identity to Reference	Completeness	Redundancy
<i>E. coli</i> K-12	99.99%	99.98%	0.08%


Bacterial Identification: *E. coli* and *S. flexneri*

- Our workflow assigns taxonomy to bacterial genomes using three possible methods (Figure 5):

1. Multi-locus sequence typing (MLST)
2. Rapid comparison to database of genome sourmash¹ sketches and subsequent ANI
3. Genome Taxonomy Database Toolkit (GTDB-Tk)²

- E. coli* and *S. flexneri* are closely related with highly conserved genomic content; it has been suggested that they should be classified as the same species.³
- Our workflow differentiates *S. flexneri* and *E. coli* despite 98% ANI (Figure 4).
- Investigations into sub-strain-level differentiation using ANI are ongoing.


Figure 4. ANI of *E. coli* and *S. flexneri* genomes

Zachary Pimentel¹; Andrea Watson¹; Giel Göertz¹; Marcel Hillebrand¹; Bernice Westrek-Esselink¹; Julia Maritz¹; James Cass¹

¹Merck & Co., Inc., Rahway, NJ, USA

Figure 5. Bacterial whole-genome identification workflow

Yeast Identification: *S. cerevisiae* and *K. phaffii*

- Yeast whole-genome assembly, an ongoing addition to ViruScreen, is complicated by their relatively larger genome size, repetitive low-complexity sequences, and potential for more than one complete set of chromosomes in a cell.
- Multiple copies of the genome complicate whole-genome assembly, as first-pass assemblies are haploid and therefore represent a composite, or consensus, of different haplotypes.
- We evaluated our yeast assemblies using completeness and redundancy of single-copy gene sets shared by most fungi (Table 2).

Table 2. Yeast assembly quality evaluation

Strain	Completeness	Redundancy
<i>Saccharomyces cerevisiae</i>	75.1%	6.1%
<i>Komagataella phaffii</i>	82.3%	1.2%

- Despite low completeness scores we were able to identify *S. cerevisiae* and *K. phaffii* species using our genome assemblies, and unassembled long-reads in the case of *K. phaffii*, using the sourmash genome identification tool (Table 3).

Table 3. Yeast long-read and assembly taxonomic identification

Strain	Long-Reads Only	Genome Assembly
	Taxonomic ID	
<i>Saccharomyces cerevisiae</i>	None	<i>Saccharomyces cerevisiae</i>
<i>Komagataella phaffii</i>	<i>Komagataella phaffii</i>	<i>Komagataella phaffii</i>

Conclusions

- ViruScreen is a powerful, GMP-ready platform that makes high-resolution microbial identification of adventitious agents accessible to non-bioinformaticians.
- Our workflows leverage long-read sequencing to rapidly distinguish closely related *E. coli* and *S. flexneri* strains for precise bacterial identification, and taxonomically identify yeasts *S. cerevisiae* and *K. phaffii*.
- Together, these capabilities reduce time and cost of adventitious agent identification in vaccines and biologics samples.

References

1. Irber, Luis, et al. "Lightweight compositional analysis of metagenomes with FracMinHash and minimum metagenome covers." *BioRxiv* (2022): 2022-01.
2. Chaumeil, Pierre-Alain, et al. "GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database." *Bioinformatics* (2020): 1925-1927.
3. Parks, Donovan H., et al. "Reclassification of Shigella species as later heterotypic synonyms of *Escherichia coli* in the Genome Taxonomy Database." *BioRxiv* (2021): 2021-09.

Disclosures & Acknowledgments

Funding for this research was provided by Merck Sharp & Dohme LLC, a subsidiary of Merck & Co., Inc., Rahway, NJ, USA.

Contact information

Contact the authors at zachary.pimentel@merck.com or andrea.watson@merck.com