QbD: Still in Design?
A Report from PDA’s QbD Workshop
Bert Frohlich, Amgen

Organized by general themes, this report summarizes the presentations, discussions and experiences shared by participants at the May 21-22 Quality by Design for Biopharmaceuticals workshop in Bethesda, Md. The pharmaceutical and biopharmaceutical industries and two regulatory agencies were represented.

Although the quality by design (QbD) for biopharmaceuticals concept was introduced to the biopharmaceutical industry relatively recently, it was acknowledged by both the U.S. FDA and industry that QbD is not a new concept. To some degree, this rational design approach has been used previously by practitioners of process development. There was, however, fairly wide agreement that a need exists to establish a structured framework that stimulates innovation and continuous improvement for the design of products and manufacturing processes for biopharmaceuticals, as well as small-molecule drugs. It was stressed on multiple occasions that this quality initiative is not a revolution but simply an evolution in drug design and specification and of the relationship between industry and its governmental regulators.

The main objective of this initiative is to build quality into manufacturing processes and product release rather than testing it in. The ultimate goal, as envisioned by FDA, is the desired state, defined as follows: [Cherney]

Maximal efficient, agile, flexible pharmaceutical manufacturing sector that produces reliable high-quality products without extensive regulatory oversight.

This state would encourage:
[Cherney]

- A regulatory process that is consistent, transparent and science-based
- A regulatory process that allows for efficient and effective continuous improvement

continued on page 23
2008 PDA/EMEA Joint Conference
European GMP: Current Issues and Future Developments

18-21 February 2008
Budapest, Hungary

- Conference | 20-21 February 2008
- Exhibition | 20-21 February 2008
- Training Courses | 18-19 February 2008
- Workshop | 18-19 February 2008

Don’t miss the opportunity to learn about the fast evolving European regulatory environment directly from regulators and industry experts who will share their experience and knowledge. The conference agenda includes eight concurrent sessions and three plenary sessions, covering important topics such as:

- Dedicated Facilities
- Annex 1
- QP Discretion
- Atypical Actives
- GMP Inspections
- ICH Quality Guidance
- Investigational Medicinal Products
- Excipient GMP
- Annex 2
- Variations
- New Guidance
- Future of Inspections
- And More…

Most importantly, there will be an extraordinary number of speakers from the EMEA, the European Commission and the national authorities. Rarely have so many officials from so many authorities across Europe committed to present their views and participate in discussions on evolving GMPs. And never has interaction with European inspectors been this convenient.

See you in Budapest in February 2008!

www.pda.org/emea2008

Register by 1 December 2007 and SAVE!
Is Your Environmental Monitoring Program Out Of Control?

Do you want to take control of your Environmental Monitoring operation while improving quality, increasing productivity, reducing costs, and ensuring regulatory compliance?

Moda’s Environmental Monitoring solution, Moda-EM™, helps pharmaceutical Quality Control operations streamline the labor intensive and error-prone process of sampling, testing and monitoring the manufacturing environment.

Moda-EM provides direct, tangible return-on-investment by reducing the time and effort required to execute environmental monitoring protocols. By leveraging mobile computing technology, Moda-EM automates your Standard Operating Procedures (SOPs) and ensures that sampling technicians do not deviate from mandated processes, which will reduce the risk of non-compliance.

By minimizing the amount of human effort associated with environmental monitoring activities, error rates inherent in paper-based recording, manual reconciliation and batch data entry are significantly reduced. Real time access to sampling and testing information and sophisticated reporting and trending facilities improves management’s visibility into the overall effectiveness of their environmental monitoring program.

Take Control; Contact MODA Technology Partners
For More Information Today.

MODA Technology Partners • 1255 Drummers Lane • Wayne, PA 19087 • Tel.: 866.421.6632 USA & Canada • 484.253.1000
E-mail: contactus@modatp.com • Website: www.modatp.com
Table of Contents

Features

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDA News & Notes</td>
<td>8</td>
<td>Presidents Message: IPQ—New Member Benefit—Mails in October</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>PDA Revised Technical Report on Cold Shipping Takes Global View</td>
</tr>
<tr>
<td>Science & Technology</td>
<td>10</td>
<td>Science & Technology Snapshot: From the VP, Student Programs, In Print, Journal Preview, Technology Trend</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>PDA Interest Groups and Leaders</td>
</tr>
<tr>
<td>Quality & Regulatory Affairs</td>
<td>30</td>
<td>Quality and Regulatory Snapshot: From the VP, Task Force Update, Advisory Board Watch, IG Briefing Regulatory Relations</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>PDA Submits QP Survey Results</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>PDA Comments on EMEA Batch Release Certificate</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>PDA Comments on Q10 Pharmaceutical Quality Systems</td>
</tr>
<tr>
<td>Membership</td>
<td>38</td>
<td>Finding Creative Ways to Connect Members: The Southern California Corporate Outreach Program</td>
</tr>
<tr>
<td>Resources</td>
<td>39</td>
<td>Volunteer Spotlight: Bob Dana</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>New member list</td>
</tr>
<tr>
<td></td>
<td>43</td>
<td>Chapter Contacts</td>
</tr>
<tr>
<td>Programs & Meetings</td>
<td>44</td>
<td>Programming Department Offers a Full Lineup of Conferences</td>
</tr>
<tr>
<td>TRI • Education</td>
<td>46</td>
<td>TRI Talk: Bethesda—We Came, We Saw, We Conquered!</td>
</tr>
<tr>
<td>Europe</td>
<td>48</td>
<td>Upcoming Event: Modern Sterile Manufacturing</td>
</tr>
<tr>
<td></td>
<td>49</td>
<td>Chapters and People: Susanne Keitel Named New Director of EDQM</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>Conference Report: Technology Transfer Today Highlights</td>
</tr>
<tr>
<td>Professional Resources</td>
<td>28</td>
<td>PDA Bestsellers</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>PDA New Releases: Essential Microbiology for QP Candidates</td>
</tr>
</tbody>
</table>

Coming Next Month

Reports from the 2007 PDA/FDA Joint Regulatory Conference. To advertise, contact Cindy Tabb at +1 (301) 656-5900, ext. 222 or tabb@pda.org.
Join regulatory representatives and industry experts at the PDA/FDA Co-Sponsored Conference Series on Quality Systems to learn how your company can manage change more effectively and instill a continuous improvement philosophy. Industry case studies for modern quality systems will include:

- Developing a Pharmaceutical Quality System
- The Lifecycle Approach
- Key Enablers of the Pharmaceutical Quality System

Additional topics of discussion will include:

- Management Responsibilities
- Change Management
- Corrective Action/Preventive Action
- Process and Product Quality Management

www.pda.org/qualsys
Editor’s Message

One area of contribution I frequently make to the PDA Letter is sharing reports on PDA’s biggest events with the membership. For instance, the Nov/Dec issue of each year is typically reserved for my reports on the PDA/FDA Joint Regulatory Conference. In this issue, I’m pleased to say that we have a fantastic meeting report on the May 2007 PDA meeting on Quality by Design for biotech products. I think Bert has a really good eye for journalism as he captures many of the most important discussions that took place during the event.

The Quality & Regulatory Snapshot makes its second appearance in this month’s issue. PDA’s Bob Dana deserves a lot of credit for supplying much of the content in this Q&R Snapshot. Jim Lyda contributed to it as well. Jim also was instrumental in rounding up the articles in the Europe section of this issue.

In the Science & Technology Snapshot, we are running the first “In Print” snapshot, an excerpt from a newly published PDA-DHI technical book. This month’s selection is from Validation of Analytical Methods for Biopharmaceuticals: A Guide to Risk-Based Validation and Implementation Strategies, by Stephan Kraus, PhD. We look to run the “In Print” regularly in the S&T Snapshot.

Programs & Meetings checks in with an update on their department, which includes a photo of all the people who help deliver PDA’s excellent conferences, meetings and workshops.

Finally, Gail Sherman explains in her TRI Talk how she and her staff “conquered” Bethesda.

Visit www.pda.org/pdaletter

At the Letter’s new website, you can read selected articles and link to the members-only archive before your hard copy arrives in the mail! Also, you can easily submit your comments and have them published as “Letters to the Editor.” Click on the “Authors Wanted” link to learn about upcoming topics and how to submit articles!
PDA’s Virtual Career Fair brings the experience of an interactive career fair to the convenience of the internet.

- Explore career opportunities and advancements
- Achieve national and global exposure
- Feel secure in a 100% confidential environment
- Chat live with employers, interview and receive job offers

Web Exhibition

- Visit with industry leading experts as they present the latest in innovative technology
- Experience interactive web casts, product demonstrations and educational seminars for free!
- Connect and network with industry leading experts by communicating in a real-time environment

24 hour access to Virtual Career Fair and Web Exhibition information

www.pda.org/careers

Virtual Career Fair: September 11, 2007
Virtual Career and Web Exhibition: October 10-11, 2007
Virtual Career Fair: November 15, 2007

No Registration Fee Required
On behalf of PDA’s Board of Directors, I am pleased to announce that the inaugural issue of *International Pharmaceutical Quality™*, the newest benefit of PDA membership, mailed to members in October. From now on, all PDA members will receive IPQ™ six times per year—a $400 value—at no additional charge.

I want to recognize the Board of Directors for making the bold decision to partner with Bill Paulson to create *International Pharmaceutical Quality™* and to fold the publication into the standard membership benefits package. IPQ™, along with PDA Technical Reports, the *PDA Journal for Pharmaceutical Science and Technology*, the *PDA Letter*, and discounts to all PDA events and training make membership in PDA a valuable and cost-effective tool for professionals in the pharmaceutical/biopharmaceutical industry around the world.

Please, let us know what you think of *International Pharmaceutical Quality™*. Without your support, IPQ™ would not be possible. For more information on IPQ™, go to www.ipqpubs.com. In addition, you can contact PDA Managing Editor Walter Morris directly at 301-656-5900, ext. 148, or morris@pda.org with any questions or comments regarding IPQ™.

I hope you find this new member benefit both useful and valuable.

MARK YOUR CALENDAR!

Upcoming this November and December at the NEW PDA Training and Research Institute facility in Bethesda, Maryland, USA:

NOVEMBER 13-16
Validation by Design®: DoE Basics for PAT Applications
www.pdatraining.org/doepat

NOVEMBER 14-16
Developing an Environmental Monitoring Program
www.pdatraining.org/EMP

NOVEMBER 14-16
Pharmaceutical Water System Microbiology
www.pdatraining.org/watersystems

DECEMBER 5-6
Developing and Validating a Cleaning and Disinfection Program for Controlled Environments
www.pdatraining.org/DVCD

The PDA Training and Research Institute will also be conducting the following training course at the Industrial Pharmacy Laboratory of the Institute of Pharmaceutical Technology in Basel, Switzerland:

DECEMBER 4-6
Practical Aspects of Aseptic Processing
www.pdatraining.org/paap

Visit www.pdatraining.org for more details.

Contact: James Wamsley, Manager, Laboratory Education
+1 (301) 656-5900 ext. 137 | wamsley@pda.org
PDA published Technical Report No. 39 (Revised 2007), *Guidance for Temperature-Controlled Medicinal Products: Maintaining the Quality of Temperature-Sensitive Medicinal Products through the Transportation Environment*, updating the 2005 version of the document. The revision broadens the global applicability of the document by harmonizing with both the regulatory requirements of the US Food and Drug Administration (FDA) and the EU’s European Medicines Agency (EMEA). The document and the training will benefit both manufacturers of temperature-sensitive products and the companies that ship such products.

“Technical Report No. 39 was a landmark document for PDA, as it introduced best practices for controlled temperature shipping to our membership and the industry at large,” says PDA President Bob Myers. “The updated version expands the document’s applicability globally by harmonizing with the expectations of EU regulators.”

The rewrite was prepared by the PDA Temperature-Controlled Pharmaceuticals Group—Harmonization Task Force, a panel of experts from the pharmaceutical industry with significant experience manufacturing and shipping temperature-sensitive products. The members of this international group are:

- Rafik Bishara, PhD, Eli Lilly and Company (chair)
- Detlef Dichte, Eli Lilly and Company
- Shirley-Ann Feld, Sanofi-Aventis
- Janne Grusgaard, Novo Nordisk
- David Patrick, Johnson & Johnson
- Bob Seevers, PhD, Eli Lilly and Company
- Edward Smith, PhD, Wyeth
- David Ulrich, Abbott Laboratories
- Wigand Weirich, PhD, Roche
- Karl Womastek, Baxter

Members of the task force will be participating in training workshops and lecture courses in the coming months. Training has taken place already in Berlin and Cork. More workshops are planned in the United States in 2008. Check the PDA website and the *PDA Letter* and the *PDA Connector* for dates.
A “Sneak Peak” at Upcoming Technical Reports

Rich Levy, PhD, PDA

In the June Science & Technology Snapshot, I wrote about the model PDA developed for generating technical reports during the process of completing Technical Report No. 1. I am pleased to report that we are holding our first Technical Report “Sneak Peak” on Nov. 5.

Five PDA technical reports will be discussed at this meeting by members of the expert Task Forces drafting them:

- Technical Report No. 14, Revised 2007, Validation of Column-Based Separation Processes
- Technical Report Draft, Risk Management for Aseptic Processing

We are grateful to our members at Amgen for agreeing to host this conference at their facility in Thousand Oaks, Calif. I look forward to participating in this first TR Sneak Peak and hope to see many PDA members there.

In this month’s Snapshot, we preview a new PDA/DHI book on analytical methods, a team of experts at Johnson & Johnson write about the broadening use of e-beam sterilization technology, Journal Editor Lee Kirsch, PhD, provides the Journal Preview and the 2008 Journal Student Programs are announced.

Student Programs
PDA Supports Tomorrow’s Pharmaceutical Breakthroughs

Tomorrow’s breakthroughs in the pharmaceutical sciences will be the product of today’s young researchers at pharmaceutical schools across the globe.

Recognizing these researchers’ efforts and the influence of their work, PDA and the PDA Journal of Pharmaceutical Science and Technology have established three student scientific programs to promote applied research in areas of study relevant to the scientific foundations of pharmaceutical and biopharmaceutical product development, drug manufacturing and quality assurance technologies.

Two of these programs—the Annual Graduate Research Symposium and Student Poster Sessions—come together each year at the PDA Annual Meeting and bring students face-to-face with industry and regulatory professionals in formal conference and poster sessions. The Graduate Research Symposium will be hosted as a program session during the 2008 PDA Annual Meeting, and the Student Poster Sessions will be held in the exhibition hall, with presentations hosted throughout the conference.

The Predoctoral Fellowship Program offers doctoral candidates grants of various amounts to assist in their research. In addition to financial support, recipients of the fellowship grants will be given the opportunity to present their work at a distinguished PDA conference held in the United States or internationally.

Each program gives students the opportunity to share their research findings, network with industry leaders and make meaningful career strides. Help support the growth of our industry by encouraging students you know to apply to the 2008 programs today and/or attending a student presentation at the PDA 2008 Annual Meeting.

For more information on the PDA Student Programs and application and eligibility requirements, visit www.pda.org/ssp or contact Iris Rice at +1 (301) 656-5900 ext. 129 or rice@pda.org.
Journal Preview

Hot topics abound in the fall issue of the *PDA Journal of Pharmaceutical Science and Technology*. The long-awaited third edition of the *M. J. Akers, PhD* and *S. L. Nail’s* series (this version with co-author Wendy Saffell-Clemmer) on the *Top Ten Topics in Parenteral Science and Technology* begins this issue. The last version was published ten years ago. The topics reviewed this time include advances in injectable formulation and packaging design, extractables and leachables, new analytical methods for biopolymers, protein aggregation issues, QBD/PAT, manufacturing equipment, isolation technologies and rapid microbial detection methods.

Not surprisingly, the rest of the articles in this issue address some of these very same topics. Two research articles focus on advanced formulation designs to enhance drug dissolution by the manipulation of drug crystallization conditions (*Preparation and Physicochemical and Preclinical Evaluations of Recrystallized Celecoxib by S. Mutalk, et al.*), and solid dispersion technology (*In Vivo and In Vitro Evaluation of Solid Dispersion System of Gliclazide:PEG 6000 by S. Asyarie, et al.*). The role of serum production process variation on endotoxin contamination (*Evolution of Endotoxin Contamination during Production of a* continued on page 16

In Print

Dealing with Validation Failures

From Validation of Analytical Methods for Biopharmaceuticals: A Guide to Risk-Based Validation and Implementation Strategies, by Stephan O. Krause, PhD, Favrille, Inc

Most validation scientists do not really talk about how they deal with failed analytical method validation (AMV) or AMV extensions. Ideally, the AMV process should only be a confirmation of the test method capability already known from the analytical method development (AMD) studies. In reality, however, there will always be some AMV studies which did not pass all protocol acceptance criteria, and yes, those we prefer not to discuss. Whether we may admit that we have to deal with these situations, let us simply discuss how we could deal with them.

We should understand that some AMV studies should be expected to fail and therefore this should be planned for when managing time and allocated resources. We should distinguish a validation discrepancy from a **Technology Trend**

Low Energy Electron Beam Applications in Aseptic Filling Operations

Dieter Bachmann, PhD, Cilag, and Ike Harper, Johnson & Johnson

High-energy electron beams (e-beam) have been used as an effective means of medical product sterilization for many years. The radiation energy generated from low-energy electron beam systems is strong enough to treat the surface of an object, yet low enough that minimal shielding is required to ensure safety when placed in close proximity to personnel. More recently, low-energy e-beam systems have been used to decontaminate the surfaces of presterilized syringe tubs before transferring them into the aseptic filling area where the syringes are filled.

Prefilled syringes have been a popular choice as a convenient and practical dosage form for parenteral drug products for over 30 years. Syringes can be purchased precleaned, sterilized and sealed in a container usually called a “tub.” A puncture-resistant pouch covers the tub, and a Tyvek® lid is heat-sealed to the top of the tub, making up the microbial barrier layers for the tub. The syringe supplier sterilizes the syringes and tubs using ethylene oxide, radiation or some other means of terminal sterilization method that results in a sterility assurance level (SAL) of at least 10^-6, or less than one viable organism on every 1,000,000 units. The two microbial barrier layers ensure the contents maintain that sterility level until opened.

In order to get the sterile syringes into the aseptic filling area, the syringe tubs must be transferred into the aseptic filling area in a manner that prevents recontamination of the syringes and the filling area. To do this, the outer bag is removed within a clean environment just outside the aseptic filling area. These clean areas are typically Grade C/ISO 8/Class 100,000 environments. Under these conditions, the risk of recontaminating the tub is controlled and minimized, but the tub usually undergoes an additional decontamination treatment before it is transferred into the isolator. Upon successful decontamination of the outer surface, the tub is introduced into the sterile filling area. Once inside, the Tyvek® seal is removed from the tub opening and the syringes are placed onto the filling line for filling.

There are two commonly used methods to decontaminate syringe tubs after removing the outer bag. continued on page 18
This two-day conference will provide the most current information on both the scientific and regulatory aspects of aseptic production. Hear what thought leaders have established as the most advanced production technologies and strategies. Visit AstraZeneca’s most modern Blow-Fill-Seal manufacturing suite as well as its Nexium® plant at Gärtuna. Sessions will focus on:

- Designing a modern aseptic production suite
- Putting into operation a multipurpose aseptic production plant
- Latest developments in Blow-Fill-Seal manufacturing technologies
- Recent solutions to recurring microbiological challenges
- Practical interpretations of regulatory requirements in aseptic manufacturing

Register by 7 September and save! [www.pda.org/europe]
The first option is to simply disinfect the tub surfaces by using a wipe down technique, such as with alcohol wipes. A second option is to use sporicidal gases or a vaporized agent, such as hydrogen peroxide vapor. While these methods have been in practice for many years, they can be limited in terms of effectiveness and efficiency.

The manual-wiping technique can be difficult to prove effective and to demonstrate reproducibility. Lack of consistency in wiping techniques results in a less effective process of reducing bioburden, and variations between operators makes it difficult to show reproducibility. Consequently, a greater risk of recontamination can be expected with the manual method due to more human contact.

Gassing processes using vapor phase hydrogen peroxide, or other gaseous disinfectants, are typically more reproducible and reliable in achieving desired bioburden reduction levels than a manual wipe down method. However, hydrogen peroxide vapor dissipation can be a time-consuming process step, and peroxide residues may remain inside the tubs and syringes after the decontamination process is complete. When manufacturing sensitive parenteral products, high levels of peroxide residues in the syringe can affect the product stability. The most limiting factor of these processes is cycle time, or the time it takes to get a syringe tub into the aseptic filling area. This can be a limiting factor to the overall filling time and capacity. Additionally, both of these processes rely on biological indicators to prove effectiveness, an additional element of uncertainty when proving effectiveness of the process.

Low-energy e-beam radiation is a new alternative as a surface decontamination process. The low-energy e-beam systems typically comprise of three low-energy e-beam emitters positioned in a tangential (180°) formation to concentrate the e-beams onto a central target, the tub surface. The e-beam system produces ionizing electron beam (beta) radiation energy equivalent to about 100-200 keV, and is capable of penetrating approximately 200 micrometers of a unit density material, i.e., 1 gm/cm². The syringe tubs are conveyed along a pressurized tunnel and decontaminated by electron beams while traveling downstream to the aseptic filling area. The tunnel itself can be decontaminated with vaporized hydrogen peroxide, which may be provided by the generator used to decontaminate the aseptic filling area.

Since the tubs are purchased sterile, the bioburden level on the outer surfaces of the tubs should be extremely low (SAL 10⁻⁶). However, an assessment of the bioburden level on the tub surfaces under worst-case conditions should be performed to determine the theoretical worst-case level of bioburden that may be present. The worst-case conditions should include maximum handling manipulations, maximum hold times without the outer barrier, and maximum environmental monitoring limits. As an example, the estimated bioburden due to recontamination under worst-case conditions may be no more than 10 colony-forming units (CFU). If a safety factor of 10 were added, the predicted worst-case bioburden level may be 100 CFU. Once the worst-case bioburden level of the surface of the tubes is established, it is important to verify it. This can be done by periodically measuring the bioburden on the tub surfaces after the tubs have been exposed to the worst-case conditions.

According to relevant guidelines and requirements for decontaminating low bioburden materials such as this, a 3-log reduction of bioburden is sufficient, but a higher level is desired for additional assurances. The e-beam system makes it possible to achieve virtually any level of assurance. The bioburden reduction level can be increased or decreased by simply adjusting the e-beam and conveyor settings on the system accordingly.

Establishing the Minimum Dose

The relationship between radiation and bioburden reduction is well-established, so the use of biological indicators is not necessary. The International Organization for Standardization (ISO) provides standards and recommended practices on radiation sterilization of medical devices. ISO document #11137, “Sterilization of health care products – Radiation – Part 2: Establishing the sterilization dose” provides several methods of establishing the sterilization dose for different levels of bioburden reduction. These methods are based on the reduction of the natural bioburden on the medical device(s), not biological indicators, and they are usually applied to high-energy radiation applications.

The same relationship can be proven for low-energy radiation applications. As seen from experimental studies, a dose of 10.6 kilograys (kGy) of low-energy e-beam radiation yields a spore log reduction (SLR) = 5.8 of a highly radiation-resistant microorganism.
i.e., Bacillus pumilus, spores with a radiation resistance (D-value) of 1.3 kGy. Upon further extrapolation of this relationship, a dose of 15 kGy would yield an 8-log reduction of this organism. This logic can be applied to establishing the decontamination dose for the low energy e-beam process, which is used to decontaminate much less-resistant microorganisms that would be present on the surface of the tubs.

Once the desired dose is established, it must be accomplished reliably and repeatedly on every tub. In order to achieve the desired dose throughout the run, the equipment parameters of the e-beam system must be set accordingly, i.e., beam current and conveyor speed. This is done by measuring the dose on the surface of the tub at various settings and establishing the relationship between the set points and the delivered dose.

Due to the geometry of the tub, some areas on the surface will receive a higher or lower dose because of the proximity of the tub surfaces to the e-beam emitters as the tubs pass through the tunnel. Following the earlier example, the equipment must be set up to deliver the minimum dose of 15 kGy to the minimum absorbed dose location on the tub surface. This location receives the lowest dose of radiation and thus has the greatest challenge for microbial kill, so as long as this location receives the minimum dose, the tub is decontaminated to the desired level.

“Dose mapping” is the term given to the practice of measuring the absorbed dose across the surfaces of the tubs by using dose meters, or dosimeters. The dose range from the highest to the lowest measured dose on the tub surface represents the “dose distribution” or “dose uniformity” across the tub. The location on the tub surface that measures the lowest absorbed dose is usually the location that is farthest away from the e-beam emitters. Incidentally, the location on the tub that measures the highest absorbed dose of radiation is usually the part of the tub that comes closest to the e-beam emitter as it passes on the conveyor. For the prefilled syringe tubs, the middle of the front vertical surface and middle of the back vertical surface as the tub passes through the conveyor is typically the minimum dose location(s). The minimum radiation dose must be reached at the lowest absorbed dose location time after time, tub after tub throughout the entire run.

Due to the nature of the process, it is not possible or practical to measure the dose on all surfaces on all of the tubs. Therefore, it is necessary to identify a reference dose location during dose mapping that can be used to extrapolate the dose received at the minimum and maximum dose locations. Routine dose monitoring during production is based on a statistical model developed and verified during validation. The routine dosimeter reading substantiates that the correct equipment parameters were used during production and that the minimum dose was achieved throughout the run.

Establishing the Equipment Settings
Regardless of the manufacturer of the e-beam system and the process mode of the systems, i.e., scanning beam or static energy cloud, the dose will vary across the tub surface, and the lowest absorbed dose location on the surface of the tub is the determining factor for selecting the correct operating settings for the equipment. The following aspects for establishing the equipment parameter settings are taken into account:

1. Established relationship between the equipment settings and the dose achieved at those settings and across a range settings
2. Dose set point
3. Dose distribution across all surfaces of the tub
4. Dose range between min and max and reference locations
5. Measurements for uncertainties within the dosimetry systems
6. Repeatability of process throughout the run and across multiple runs

Validation
Once the equipment parameters have been established, validation is required to substantiate the reliability and repeatability of the process. Validation should also test the failure modes of the equipment. These systems are designed to stop if a critical error occurs, such as a tub misfeed. The design of the system should allow for clearance of all tubs on the conveyor system without contaminating the aseptic filling area or the transfer zone between the e-beam and the aseptic filling area.

It is important that the equipment is able to detect all system, conveyor and electrical errors. A risk assessment must be performed to determine what action should be taken for each type of error.

Routine Operation and Dose Monitoring
Once the equipment parameters have been established and validated, they...
Bosch like you have never seen before.

Bosch Packaging is well known for filling and packaging of vials, ampoules, cartridges and bulk syringes. It is with this extensive knowledge and experience that Bosch now introduces a new product line designed specifically for nested syringes. With quality and innovation in mind, Bosch is introducing a complete portfolio of nested syringe filling and packaging equipment. You can expect all of the same great quality, efficiency, high performance and support as Bosch Packaging offers with our other equipment.

Robert Bosch Packaging Technology Inc.
Pharma
8700 Wyoming Ave. N
Minneapolis, MN 55445-1836
Phone +1-763-424-4700
www.boschpharma-us.com
are set for routine production and should only require minimal adjustments over time. In general, dosimeters are used to verify the minimum dose is achieved at the beginning and end of each run by placing dosimeters at the reference location on the first and last tub. The reference dosimeter is used to verify that the dose being received on the tub surface at the lowest dose location meets the preestablished requirement for minimum dose.

Typically, the minimum dose is verified by measuring a reference dosimeter on the first tub, and the filling operations begin. During the run, the e-beam system is monitored by sensors that continuously check the conveyor speed, the power input, the power output and various safety aspects. At the end of the run, a dosimeter is placed on the last tub to verify that the minimum dose was achieved at the end of the run. These dosimeters bracket the run. As a precaution, two dosimeters may be used to substantiate the measurements.

It is necessary to calibrate the dosimetry system regularly to ensure operational readiness and to purchase dosimeters that are traceable to a national standard laboratory that certifies the dosimeters for use in this type of application. Likewise, it is necessary to place the entire e-beam decontamination system on a preventive maintenance and calibration schedule. Additionally, it is necessary to monitor the tub bioburden on a regular basis to verify that the bioburden does not exceed the preestablished limits and to detect unexpected changes in bioburden levels that may be due to seasonal affects, changes in personnel, changes in the facilities or other influences.

Conclusion

Low-energy e-beam surface decontamination systems are an excellent means to facilitate the continuous transfer of presterilized syringes tubs into an aseptic area. While the e-beam decontamination system can present new technical challenges to the user, such as using dosimetry instead of BI’s, many benefits can be realized, such as:

- No vapor residues
- No temperature affects
- Surface treatment only, no impact to tub contents
- Elimination of biological indicators

The rate at which the tubs can pass through the system is about 3-5 tubs per minute, corresponding to approximately 300-600 syringes per min, depending on the number of syringes in the tub. The same standard tub can hold many different types of syringes, or other presterilized materials as well. The systems’ modular designs fit into virtually any isolator or production line application, so the costs of the systems can vary. Under nearly any configuration, a high rate of throughput can be maintained reliably for the duration of the filling run. These combined benefits make low-energy e-beam decontamination systems an appealing alternative to traditional methods of surface decontamination.

Journal Preview, continued from page 11

Therapeutic Serum by H. Massaldi and V. Morais and the use of polymerase chain reactions for the rapid detection of microbial contamination (*Rapid Diagnostic Method for Quantitative Testing of < 100 microbes in Water* by A. Walzer, *et al.*) are the subjects of research articles from Uruguay and Germany, respectively.

This issue also includes a timely and informative review of the role of microbial contamination in recent FDA product recalls (*Microbial Diversity in Pharmaceutical Product Recalls and Environments* by L. Jimenez).
MicroSeq® every day keeps recalls away.

Protect your brand with DNA-based microbial identification.
Harmful bacteria and fungi can contaminate your raw materials, your production facilities and, even worse, your branded products. Chances are you’re using outdated methods that can’t identify these organisms with the speed and confidence you need to avoid delayed product releases, backorders, and even recalls. Fortunately, there is a prescription for QC success—the MicroSeq® Microbial Identification System. This DNA-based solution is the fastest and most accurate commercially available system for bacterial and fungal identification. That’s why leading pharmaceutical QA/QC labs worldwide use MicroSeq every day.

Schedule a QC checkup today at microseq.com

“Genotypic methods have been shown to be more accurate and precise than traditional biochemical and phenotypic techniques.”
– FDA Guidance For Pharmaceutical cGMPs, September 2004
validation failure. It is difficult to put
percentages on how many passing
AMV studies versus validation failures
should be considered appropriate. As
discussed, this will somewhat depend
on the firm’s regulatory and financial
standing which may in turn impact
the balancing lever between wide
and narrow acceptance criteria. For
example, passing 100 of the last 100
AMV studies is certainly undesirable,
as this suggests that we may run rather
meaningless validation studies, and are
not challenging the suitability of our
processes enough. On the other hand,
routinely passing only 50% of all AMV
protocols may also be inappropriate
because we may have failed to select
suitable test methodologies, or may
not have sufficiently optimized test
methods.

The “Recovery” Mission

Figure 8.1 (page 20) illustrates the
recovery process that starts with the
observation of a validation failure, i.e.,
a single AMV protocol acceptance
criterion or multiple criteria were not
met during the protocol execution.
The failure to pass protocol acceptance
criteria is shown in the middle of
Figure 8.1 and highlighted in grey,
to visually represent the fact that we
have entered the “grey zone”. It is now
critical for inspections, compliance,
and impact on project completion,
to make good decisions. (The author
identified and discussed the affected
stakeholders in detail in Chapter 4.)
Once a validation failure is observed,
this must be locked in some form of
exception or investigation report (IR).
Answers to the following questions will
provide the best direction in which to
proceed, while keeping stakeholders
interests and risks in mind. The
answers will then direct us into either
the lower loop (inspection/compliance
risk) or upper loop (project completion
risk). Assuming that we followed the
AMV protocol and generated valid test
results, meaning no operator error or
test system suitability error occurred,
we should now answer the following
questions.
• Did we set balanced acceptance
criteria?
 — Review protocol acceptance criteria
 justification(s), specifications, and
 historical data.
• Did we lean towards quality or
 project completion when setting
criteria?
 — Re-evaluate risks to patient and
 firm assessed to set acceptance criteria.
• Did we fail to pass a critical protocol
 acceptance criterion (or several) such
 as intermediate precision when high
 variability could cause OOS results?
 — Check for criticality and corres-
 ponding likelihood of OOS results.
• Are results generated by this test
 method critical to assess product
 safety or product/process quality,
or efficacy?
 — Consider production process
 stage, and impact to safety, quality or
 efficacy.
• Were there previous AMV failures
 (and discrepancies) with this test
 method?
 — If this is not a new method, review
 previous AMV(s).
• Were there any (failing) data sets
 generated during AMD that were
 not discussed in the AMD report?
 — Review laboratory notebooks from
 AMD scientists and (if necessary)
 conduct interviews with them.
• What is the predicted release-to-
 reject ratio or probability for this
 test method and production process
 step?
 — (Re-)calculate the predicted OOS
 probability.
 — Estimate probabilities for error
 classes 1A–2B.
• Has this kind of failure occurred
 before and what how did we handle
 this?
 — Count failures versus successful
 completions and review previous
 recovery processes.
• Were there previous inspection
 observations for validation processes
 and/or failures?
 — Review previous regulatory and
 internal observation notes.
• What is the impact to this project
 and connected projects?
 — Review and discuss project timelines
 with project managers.
 — Assess the predicted impact (in dollars)
 to the firm.

Choosing the Lower Loop

Having assessed all the answers to the
questions above, we may decide to
go into the lower loop (Figure 8.1). Assuming we need to complete this
AMV report because of pressure to
complete the project, the lower loop
process steps are colored grey as we
may only achieve a “pseudo-validated”
status once the report is closed. This
inspection risk may be tolerated from a
business perspective while recognizing
the possibility of a potential inspection
observation. This AMV completion
may be needed to finish a large
project that may be vital for the firm’s
competitiveness, so this option may
be selected. At other times, acceptance
criteria may have been set too
conservatively (narrowly) and re-setting
may be justifiable. The firm also may
need to consider overall historical and
existing compliance status for quality
control (QC) operations, since lower
loop selections are always inspection
and compliance risks, no matter how
they are handled and justified. The
total number of lower loops, when
compared to upper loops, and versus
Sterile AlphaSat® 10

Ultraclean pre-wetted wipers clean your aseptic isolator while conserving its valuable space

Sterile AlphaSat® 10 contains a patented sealed-border polyester wiper pre-wetted with 70% isopropyl alcohol. Its resealable package is sized appropriately for the limited space in mini environments. Sterile AlphaSat 10 is designed to clean interiors of aseptic isolators, contain spills while isolators are in use and wipe down articles before placement in the transfer isolator.

For over 40 years, ITW Texwipe has provided innovative materials for cleaning critical environments.

Our cleaning and contamination control products include a complete line of sterile and non-sterile dry and pre-wetted wipers, swabs and mopping systems.
the proportion of passing validations, needs to be minimal.

Choosing the Upper Loop

Without question, selecting the upper loop is always the better choice when considering (only) the quality of the final test method and the overall validation process. Within this loop there are essentially three levels of how “deep” we look into this failure, and how willing we are to really improve individual test method performance and this will determine the test method performance. Although this may sound strange, we must be willing to improve test method performance and devote resources and allocate time to really implement any improvements.

The first choice to re-execute with the current protocol acceptance criteria based on the identified root cause of error anything but those errors causing validation discrepancies — will be the fastest to resolve. Fixing an “error” will not change or improve anything for test method performance. For example, spiked proteins were partially adsorbed at or before sample preparation to glass containers, and we concluded that plastic containers should have been used. However, this could be justified simply based on the fact that the originally set requirements for test method suitability are unchanged.

The next box down, “Tightening of Operational Limits”, requires us to run the test method system under more stringent operational limits. These could entail test method standard operating procedures (SOP) limiting the timing brackets for certain reaction steps. Or we could reduce the allowed sample preparation or overall testing time to reduce degradation or other variations that impact on the test results. Another, often used, tightening of operational limits (although not usually identified as such) could be narrowing of the qualification requirements to demonstrate operator proficiency, or excluding the use of particular instruments or critical test reagents. In any case, the tightening of operational conditions should lead to improved intermediate precision results.

The last and most cumbersome process, to further optimize the test methods, may have the greatest effect on the overall improvement of test method performance. However it may also be the most expensive recovery process—when considering only the short-term business impact—and usually requires a significant time to complete. Because the timely completion of projects is vital for most firms, we must consider all aspects that impact on patient safety, product quality, additional time and costs, along with short- and long-term profits for the firm.

Reference

Figure 8.1

Dealing with AMV Failures

[Diagram showing the flow of dealing with AMV failures, including re-execution, tightening of operational limits, optimization of analytical method, study or investigation, compliance, passing original acceptance criteria, not passing acceptance criteria, AMV exception or IR, re-execution with wider acceptance criteria, and re-evaluating AMV acceptance criteria.]
PDA Interest Groups & Leaders

PDA Interest Groups are divided into five sections by subject matter. This aligns them for improved effectiveness, supports increased synergies and provides the opportunity for Interest Group members to play a more active role in Task Forces. The five sections are Quality Systems and Regulatory Affairs, Laboratory and Microbiological Sciences, Pharmaceutical Development, Biotechnological Sciences and Manufacturing Sciences. Any PDA member can join one or more Interest Group by updating their member profile (www.pda.org/pdf/join_IG_instruction.pdf). Please go to www.pda.org/interestgroups for more information.

North American Interest Groups

<table>
<thead>
<tr>
<th>Section Leader</th>
<th>Section Title</th>
<th>Related IGs and Group Leaders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frank Kohn, PhD</td>
<td>Biopharmaceutical Sciences</td>
<td>Biotechnology Group Leader: Jill A. Myers, PhD BioPro Consulting Email: jmyers@bioproconsulting.com Lyophilization Group Leader: Edward H. Trappler Lyophilization Technology Email: etrappler@lyo-t.com</td>
</tr>
<tr>
<td>David Hussong, PhD</td>
<td>Laboratory and Microbiological Sciences</td>
<td>Microbiology/Environmental Monitoring Group Leader: Jeanne E. Moldenhauer, PhD Excellent Pharma Consulting Email: jeannemoldenhauer@yahoo.com</td>
</tr>
<tr>
<td>Don Elinski</td>
<td>Manufacturing Sciences</td>
<td>Analytical Labs/Stability Group Leader: Rafik H. Bishara, PhD Email: rafikb shamara2@yahoo.com Facilities and Engineering Group Leader: Christopher J. Smalley, PhD Email: smallex2@wyeth.com</td>
</tr>
<tr>
<td>Sandeep Nema, PhD</td>
<td>Pharmaceutical Development</td>
<td>Filtration Group Leader: Russell Madsen The Williamsburg Group, LLC Email: madsen@thewilliamsburggroup.com</td>
</tr>
<tr>
<td>Robert Dana</td>
<td>Quality Systems and Regulatory Affairs</td>
<td>Clinical Trial Materials Group Leader: Vince L. Mathews Eli Lilly & Co. Email: vlm@lilly.com</td>
</tr>
</tbody>
</table>

European Interest Groups

<table>
<thead>
<tr>
<th>Related IGs and Group Leaders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biotech Group Leader: Roland Guenther Novartis Pharma AG Email: roland.guenther@pharma.novartis.com</td>
</tr>
<tr>
<td>Visual Inspection of Parenterals Group Leader: Markus Lankers, PhD Rap.ID GmbH Email: markus.lankers@rap-id.com</td>
</tr>
<tr>
<td>Filtration Group Leader: Roger Seiler Sartorius SA Email: roger.seiler@sartorius.com</td>
</tr>
<tr>
<td>Production and Engineering Group Leader: Philippe Gomez Sartorius SA Email: Philippe.gomez@sartorius.com</td>
</tr>
<tr>
<td>Profiled Syringes Group Leader: Thomas Schoenknecht, PhD Bünner Glas GmbH Email: t.schoenknecht@gerresheimer.com</td>
</tr>
<tr>
<td>Nanotechnology Group Leader: D F Chowdhury Apton BioPharma Email: Facr@aol.com</td>
</tr>
<tr>
<td>Technology Transfer Group Leaders: Volker Eck, PhD PDA Email: eck@pda.org Zdenka Mrvova Zentiva Email: zdenka.mrvova@zentiva.cz</td>
</tr>
</tbody>
</table>

PDA Interest Groups & Leaders
No one likes the risk attached to performing media fill tests, but there is a way to alleviate the risk in the selection, use and support associated with the microbiology media you use. From validation to post-process support EMD has the products, people and expertise to help you manage from start to finish.

When you use irradiated, non-animal Tryptic Soy Broth from EMD for your media fills you'll never have to worry about whether the media caused a media fill failure.

That's because our TSB is mycoplasma tested, irradiated for sterility, and triple-wrapped to ensure it's contamination free. And because of its granulation, excellent filterability, and non-animal formulation it is both easier to use and safer than lesser brands.

For more information on our TSB or any other of our full line of microbiology products and process solutions please call us at 800-222-0342 or visit our website.
QbD: Still in Design? continued from cover

• A pharmaceutical sector that understands its products and the processes, uses risk assessment/mitigation tools and modern effective quality systems, and takes full ownership of the product

The process of QbD does not start with the manufacturing process but from the beginning with drug design and development and clinical study. In fact, there are necessary inputs from product development that are required to subsequently impose QbD on process development and manufacturing. [Cherney]

Although the desired state is desirable and achievable, the process will never really be complete if it is to adapt to new conditions and technologies and encourage continuous improvement.

FDA’s Outlook

The justification FDA provided for proposing this paradigm shift was in response to increasing cost pressures on both governmental agencies and industry and the escalation of drug prices. Agency representatives depicted the effort as an obligation to society to increase the accessibility of new drugs while maintaining their high quality. If a state of continuous improvement and innovation is to be attained, a new approach will be required to achieve not only greater manufacturing efficiency but also greater efficiency in the overall regulation of the industry. [Woodcock]

When appropriate, FDA is attempting to remove regulatory barriers and encourage more free-form innovation. Having observed that the pharmaceutical manufacturing industry was ossified by the prior environment, the Agency hopes to stimulate the use of the same new scientific methods and technologies that have benefited drug discovery and research in recent years.

FDA also noted that operating companies had been keeping two sets of books, one set of documents to show the agencies and a more science-based set for themselves that captured their true process understanding. [Woodcock] Thus, FDA would like to encourage an open exchange and change the perception of a rigid regulatory oversight.

The EMEA has a team assigned to QbD submissions that was set up in late 2003.

Although the QbD concept is not new, FDA acknowledged that actual deployment is only just beginning. At present, there are no definitive guidelines available for QbD filings, even for small-molecule drugs, which have been introduced to QbD for some time. Resources have been tight for the Agency; it is only just completing the second part of a guideline for clinical supplies for Phase 1 and has not yet addressed later-stage filings. Thus, the Agency suggested that industry may have to take the first steps and further invest in their manufacturing facilities and process understanding. [Woodcock]

The initiative will require an iterative process and may well increase initial costs of commercialization. Earlier touted to reduce the regulatory burden, FDA indicated that the QbD initiative may better be described as providing greater flexibility in regulatory approaches. [Cherney] It is hoped that the long-term costs of manufacturing and regulation decrease by taking advantage of this flexibility.

FDA also stressed that QbD will have to become an international standard if it is going to take hold. FDA acknowledged the burden on industry, already having to comply with multiple jurisdictions, and agrees that streamlining is necessary.

The Agency also acknowledged that the concepts and associated flexibility of QbD have not yet reached the inspectional arena. It is still trying to get a consistent approach among inspectors and has embarked on a training program. One class of inspectors has been trained and a second training class is in progress. FDA also spoke of establishment of a Pharmaceutical Inspectorate that would standardize approach and hopefully become an international organization.

EU Outlook

An EMEA representative stated that the regulations and guidelines are still very much in the formative stages. The ICH guidelines have been invoked but remain at a fairly high level. The goal of the guidelines is to: Develop a harmonised pharmaceutical quality system applicable across the life cycle of the product, emphasizing an integrated approach to quality risk management and science. [Ho]

Components of the ICH guidelines referred to are the Q8: Pharmaceutical Development, Q9: Quality Risk Management, and Q10: Pharmaceutical Quality System guidelines and attempt to set the groundwork for greater regulatory flexibility.

EMEA has a team assigned to QbD submissions that was set up in late 2003. Currently consisting of five assessors and five inspectors, it is referred to as the Process Analytical Technology (PAT) Team. Even though the PAT terminology is fading in favor of the more general QbD concepts, the EMEA has decided to retain the PAT team description to avoid confusion.

Echoing FDA, this team has not seen much to date in the way of innovative filings or approaches from companies. However, it was also acknowledged
that achieving the desired state will require an iterative process.

Industry Experience and Outlook
Since small molecules are ahead in terms of QbD experience, a case study was presented by a Pfizer representative. Despite Pfizer’s attempts, in a few cases, to file using QbD, the company has not observed the flexibility from the Agency to the extent it expected. However, Pfizer acknowledges a willingness for much more collaboration on the part of the regulators. From Pfizer’s interaction with FDA, there were several lessons learned:

1. Since there is no good definition of criticality, a company needs to provide its own clear definition.
2. Provide a reviewer’s guide to the Agency with explanation of documentation structure and definition of terms.
3. Conduct better risk analysis. The FDA did not understand Pfizer’s risk-assessment process and, for example, why some parameters were evaluated and not others.
4. Provide better articulation of control strategy. This includes understanding of design space and description of process-feedback controls and in-process controls.
5. Convince the Agency of robust change control system to take advantage of QbD for post-approval improvements.
6. Conduct process trending on an ongoing basis. This is of interest to FDA.

Other participants also noted the lack of regulatory guidance for QbD and filing content. One person noted that the Q8, Q9 and Q10 guidelines were frustratingly vague. In short, the industry wants to see this flexibility from FDA if it is going to continue to invest in QbD and design space characterization.

Alas, there appears to be no short-term relief from regulatory burden associated with QbD filings. In fact, the workload will increase until the agencies are convinced that the industry truly has a better process understanding and can leverage this for future improvements.

Design Space
The design space concept describes the multidimensional combination and interaction of input variables and output parameters that have been demonstrated to provide a desired objective or quality. Several speakers, including those representing FDA, invoked this concept for both product design (product knowledge) and process design (understanding). As described, [the author’s] interpretation of the relationship is represented by Figure 1 below.

This mathematical concept serves to map inputs to specified outputs. However, the actual development process happens in reverse. The design space concept appears to be further ahead for process design than for product design in terms of the application of principles. There seems to be general agreement that present clinical study readout is coarse. Therefore, the design-space approach

Figure 1: Author’s depiction of QbD based on discussions at PDA’s QbD workshop.
to process definition is frequently hampered by inadequate information regarding product quality needs, i.e., the deliverables (product specifications) to process development are often vague with respect to the desired product quality attributes. On the clinical side, industry needs to make more use of the literature and experience with similar molecules to better define the product design space. Perhaps more preclinical studies are required to study the effect of product variants and impurities. [Mire-Sluis] A consortium was suggested where such clinical experience and impurity profiles could be shared, but it is unclear what level of participation can be expected.

There was also some confusion around the fact that there are multiple design spaces. FDA stated that its intent to keep the design space definition for the process only and phase out the term for the product design to avoid confusion; [Cherney] however, the concept still applied to the clinical product as well as process environments. This author expressed his opinion that the design space definition was useful for product and process development and that perhaps should be retained for both.

Studying & Documenting Design Space

A number of questions were asked regarding the nature of documentation needed to support the design space. Here, FDA expressed considerable flexibility in allowing the use of prior knowledge. Information from the literature, experience with prior molecules, process and product platforms, and production history can be used to support the design space and to help demonstrate process understanding. [Joneckis] In the spirit of continuous improvement, FDA also acknowledged that the specification of the design space should continually be refined, and that its definition should be captured in a living document. Furthermore, a company is encouraged to continue to accumulate process understanding post-licensure to build a complete QbD dossier. [Hughes] This statement appeared to be aimed at smaller companies that simply could not be expected to have a fully-characterized process at time of filing. Whether this flexibility would be allowed for new products from larger companies was unclear; however, this approach was certainly encouraged for legacy products. An important component of the design space definition is the risk analysis that identifies the critical parameters. The rationale behind the criticality of these parameters needs to be documented, and it is acceptable to focus specification of the design space on these critical parameters. This assessment applies to critical product quality attributes as well as critical process parameters (CPPs).

One way of visualizing a critical parameter is where the control space for a given parameter is close to the edge of the design space. Since the presence of a CPP implies risk, it was suggested that critical input parameters could potentially be engineered out of the process. An example given, described the dilution of a titrant stream for post-elution pH adjustment. [Lam] Another important aspect of the design space definition includes the characterization of parameter interactions. Two parameters may be noncritical separately but critical if both deviate from the set point at the same time. Justification of the extrapolation of small-scale to large-scale results is also required if much of the design space was characterized at small scale. Thus, it appears that some sort of scale-down model qualification will need to be available to the regulators.

Where experiments are not possible at small scale, in theory, it is acceptable to explore the design space at large scale. Both the Agency and industry acknowledged that scale-down models do not always adequately represent larger systems, and it is often difficult to model an entire process. While experiments at scale are permissible from the compliance standpoint (as long as the stated bounds of the design space are not exceeded), they represent a business risk if the lot fails to meet specification. [Cherney and Hughes] Such experiments presumably would require a legitimate justification and risk assessment.

Lastly, the documentation of the design space can include a large set of data and many associated reports and documents. A multitiered approach, where a process description document is created as a highest-level summary of the design space, was suggested by [Devine.] (See “QbD Filing Content” page 29.)

Validation

There was some discussion around the impact of QbD on validation. At one point, an audience member proposed a worst-case approach during large-scale validation to exercise the design space. The consensus, however, was that such an approach would be complex and time consuming and that validation really only serves as a verification of the process knowledge gained during process development.

There was also a perception that QbD filings may ultimately obviate validation runs. However, FDA and EMEA still would be uncomfortable with less than three confirmatory runs. Thus, it appears that validation methods at continued on page 29
North America Events

Please visit www.pda.org for the most up-to-date event, lodging and registration information.

Conferences

October 15-16, 2007
2007 PDA Visual Inspections Workshop
Bethesda, Maryland

October 29-November 2, 2007
PDA’s 2nd Annual Global Conference on Pharmaceutical Microbiology
(Conference, Courses and Exhibition)
Bethesda, Maryland

November 1-2, 2007
PDA/FDA Co-sponsored Conference Series on Quality Systems
Bethesda, Maryland

November 6-8, 2007
PDA Extractables/Leachables Forum
Bethesda, Maryland

April 14-18, 2007
PDA 2008 Annual Meeting
(Conference, Courses and Exhibition)
Colorado Springs, Colorado

May 19-23, 2008
2008 PDA Biennial Training Conference
(Conference, Courses and Exhibition)
New Orleans, Louisiana

Lecture Courses

October 8-10, 2007
Advanced Pharmaceutical Filtrations and Filters

October 29-31, 2007
Managing Quality Systems

Course Series

October 15-17, 2007
Philadelphia Training Course Series
Philadelphia, Pennsylvania

November 27-29
San Diego Course Series
San Diego, California

Chapters

October 11, 2007
Mountain States Chapter
Quality Systems

November 14, 2007
New England Chapter
Filtration Workshop

November 14, 2007
Puerto Rico Chapter
Cleaning Validation

Lab and Lecture events are held at PDA TRI, Bethesda, Maryland unless otherwise indicated.

Lab Courses

October 1-5, 2007
Rapid Microbiological Methods

October 17-18, 2007
An Introduction to Visual Inspection

October 23-24, 2007
Fundamentals of D, F and z Value Analysis

October 25-26, 2007
Validating a Steam Sterilizer

October 31-November 2, 2007
Advanced Environmental Mycology Identification Workshop
Europe/Asia-Pacific Events

Please visit www.pda.org for the most up-to-date event, lodging and registration information.

Europe

October 9-11, 2007
Cleanrooms/Isolators/RBS
(Conference and Exhibition)
Berlin, Germany

October 17, 2007
Pharmaceutical Cold Chain Management
(Conference, Courses and Exhibition)
Berlin, Germany

October 25, 2007
Supplier Quality and Global cGMPs
(Conference and Exhibition)
Rome, Italy

November 8, 2007
United Kingdom Chapter
TR-1 Workshop

November 13-15, 2007
European Training Course Series in Berlin
Berlin, Germany

Asia-Pacific

November 15-16, 2007
Cork, Ireland Training Course Series
Cork, Ireland

December 4-6, 2007
Practical Aspects of Aseptic Processing
Basel, Switzerland

December 12-14, 2007
Dublin, Ireland Training Course Series
Dublin, Ireland

February 18-21, 2008
2008 PDA/EMEA Joint Conference
Budapest, Hungary

November 13-14, 2007
Japan Chapter
Chapter Annual Meeting

December 2007
Japan Chapter
Sterilized Product GMP
September Top 10 Bestsellers

 Edited by Jeanne Moldenhauer, PhD
 Item No. 17239, PDA Member $530, Nonmember $659

2. Pharmaceutical Quality Control Microbiology: A Guidebook to the Basics
 By Scott Sutton, PhD
 Item No. 17242, PDA Member $210, Nonmember $260

 Item No. 01001, PDA Member $150, Nonmember $250

4. Encyclopedia of Rapid Microbiological Methods, Volume I, II and III
 Edited by Michael J. Miller, PhD
 Item No. 17252, PDA Member $730, Nonmember $899

5. PDA Archive on CD-ROM – PDA Archive Retrieval Index
 Item No. 01101, PDA Member $395, Nonmember $590

6. Risk Assessment and Risk Management in the Pharmaceutical Industry: Clear and Simple
 By James L. Vesper
 Item No. 17219, PDA Member $235, Nonmember $289

7. Laboratory Validation: A Practitioner’s Guide
 Edited by Jeanne Moldenhauer, PhD
 Item No. 17201, PDA Member $285, Nonmember $369

8. PDA Technical Report 39, Revised 2007, Guidance for Temperature-Controlled Medicinal Products: Maintaining the Quality of Temperature-Sensitive Medicinal Products Through the Transportation Environment
 Item No. 01039, PDA Member $100, Nonmember $225

 Item No. 12009, PDA Member $95, Nonmember $115

10. Microbiology in Pharmaceutical Manufacturing
 Edited by Richard Prince
 Item No. 17185, PDA Member $285, Nonmember $359

New Releases from the PDA Bookstore

Check out these newly released titles in the PDA Bookstore, your source for pharmaceutical and biopharmaceutical science, technology and regulatory information.

PDA-DHI Publication

Essential Microbiology for QP Candidates
by Nigel Halls with Appendix from Bruce Vernon

This book has been prepared to address the requirements which are stated in the Guide to the Knowledge and Practical Experience Required by Qualified Persons in the Pharmaceutical Industry (the “Study Guide”) in relation to pharmaceutical microbiology.

2007

Item No. 17265
Member: $225, Nonmember: $279

Two New PDA Publications

By Irving J. Pflug, PhD

Proceedings from the PDA Workshop on Mycoplasma Contamination by Plant Peptones
By Barbara J. Potts, PhD

Item No. 13008
Member: $225, Nonmember: $275

Item No. 13007
Member: $250, Nonmember: $300

www.pda.org/bookstore
QbD: Still in Design? continued from page 25

This point are not much affected by the QbD paradigm shift. FDA also noted that, to date, no novel approaches to validation have been proposed to or observed by the Agency.

QbD Filing Content

Much confusion was expressed regarding what to include in a filing based on QbD concepts. FDA has not seen much from industry so far and is encouraging participation in a pilot program for companies interested in submitting a QbD filing. Such collaborations would allow issues to be addressed during assembly and as case studies for the Agency.

FDA made it very clear that it did not want to, nor had the time to, review very large, data-rich dossiers at the time of filing or even during an inspection. It stressed the need for higher-level summary documents that demonstrate product and process knowledge. Furthermore, the detailed summary should be integrated into the submission and not provided piecemeal. Detailed data and development reports, however, should be available for inspections if needed.

The suggested basic elements of this summary document are:

- Risk analysis including summary of previous knowledge
- Design of studies
- Results
- Conclusions of risk assessment and mitigation actions

To date, the Agency has seen very little in the way of high-level risk assessments for arriving at the design space definition. [Joneckis]

PAT

A presentation was also given on PAT [Koch]. A number of examples were described from other industries where benefits were derived from online, real-time measurements. Extraction of a sample from the process often changes its properties; thus, online measurements offer a clear advantage in that a true measurement is obtained.

A Center for Process Analytical Chemistry (CPAC) initiative is in progress with Exxon Mobil and Dow to develop a new sampling/sensor initiative. A variety of onboard sample handling and analysis devices are available through Swagelok.

Another advantage of PAT is that it reduces the risk of not detecting a parameter deviation. This may even allow the criticality of a process parameter to be reduced. [Lam]

Raw Material Testing

The meeting also covered the subject of analytical profiling of raw materials for discovery and control. [Lanan] Acknowledging that a large fraction of the variation in the biological manufacturing process is often attributed to the raw materials, Biogen Idec has embarked on applying sophisticated multidimensional methods and multivariate analyses to the characterization of raw materials. These methods are nonspecific, but are faster to develop, see a wider set of compounds and, typically, apply to more matrices.

By using techniques such as two-dimensional high-performance liquid chromatography with the use of a diode array, full spectra are collected at multiple retention times. This allows a more complete profiling of media additives and, through principle component analysis, was shown to detect differences between higher- and lower-performing lots.

Going Forward

A number of ideas and initiatives were expressed that represent the next steps for the collective benefit of the industry and the regulatory agencies.

- Standardize terms
- Produce joint publication of guidelines
- Possibly expand PDA Technical Report No. 42 or write new report as a guideline for QbD
- Pursue international harmonization
- Possibly form a consortium among industry and agency members to share more universal clinical and preclinical experiences around large-molecule drugs and biological process impurities.

Speakers Cited

The following list includes speakers cited by the author in this report

Barry Cherney, PhD, Deputy Director, Division of Therapeutic Proteins, CDER, FDA
Rebecca Devine, PhD, Biopharmaceutical Regulatory Consultant
Kowid Ho, PhD, Biologics/Biotechnology Unit, Afssaps
Patricia Hughes, Consumer Safety Officer, Therapeutic Facilities Review Branch, CDER, FDA
Chris Joneckis, PhD, Senior Advisor for CMC Issues, CBER, FDA
Mel Koch, PhD, CPAC, University of Washington
Harry Lam, PhD, Director, Biochemical Technology, Genentech
Maureen Lanan, PhD, Principal Scientist, Biogen Idec
Anthony Mire-Sluis, PhD, Executive Director, Quality, Amgen
Roger Nosal, Executive Director, Regulatory CMC, Pfizer
Janet Woodcock, MD, Deputy Commissioner for Operations/Chief Medical Officer, CDER, FDA
Welcome to the second edition of the PDA Quality and Regulatory Snapshot. As Rich Levy discussed last month in the inaugural edition, we intend to use this column to bring you news and updates on PDA’s activities in the quality and regulatory affairs area, as well as to report on other items of importance in the areas of quality and regulatory affairs.

While we can’t rival some of the things going on in TRI for entertainment value (See TRI Talk, p. 46 for the story of the delivery of the new Fedegari Autoclavi autoclave); there’s still lots going on in the Quality and Regulatory arena. This issue provides an update on what’s happening with some of the Task Forces who are working on various quality/regulatory initiatives, as well as a brief overview of our Regulatory Affairs and Quality Committee. There’s a brief update on the goings-on with the Quality Systems Interest Group, and Jim Lyda contributed a summary of a recent meeting held between PDA representatives and the EMEA Inspections Sector for our Regulatory Relations section.

Again, we hope you find this feature useful and an effective means of providing you some information on PDA’s activities in the Quality and Regulatory Affairs areas. We welcome your feedback on the content of this Snapshot, as well as your ideas and suggestions for future topics of discussion. Just email your thoughts to us at snapshot@pda.org. Until next month.

ICH Q10, Pharmaceutical Quality Systems:

One benefit to being as far behind as I am is that, at this writing, PDA’s comments on the proposed ICH Q10 Guideline entitled *Pharmaceutical Quality Systems* have now been approved by the Board of Directors and submitted to FDA. They will also be submitted to the EMEA; however, logistics still need to be worked out to allow their submission to Japan. If I’d met the intended time line for this column, the comments would have still been a work in process. Our comments were strongly supportive of the basic principles outlined in the guidance, including areas such as life cycle thinking, management responsibility and expectations for escalation as necessary. We did, however, offer some suggestions and recommendations for improvement to the draft guidance, including improved wording for the tables discussing implementation examples, and the annex which discussed opportunities to enhance science and risk based regulatory approaches. The comment transmittal letter and PDA’s comments can be seen at the PDA website, www.pda.org/regulatorycomments. The contents of the letter are also reproduced on p. 36 I’d like to thank the PDA volunteer members and staff who worked long and hard to develop and finalize these comments.

EMEA Contents of Batch Release Certificates for IMPs:

As reported last month, a PDA task force chaired by Karen Ginsbury, PCI Pharmaceutical Consulting, had finalized comments on a proposed EMEA rule on the Batch Release Certificate for Investigational Medicinal Products. The comments were approved by the PDA Board of Directors and submitted to EMEA. The transmittal letter appears on p. 34, and the full letter and comments grid are available at www.pda.org/regulatorycomments.

EMEA Draft Guideline, Monoclonal Antibodies—Production and Control:

Another PDA Task Force is currently working to develop comments on a proposed EMEA Guideline entitled *Guideline on Production and Quality Control of Monoclonal antibodies and Related Substances*. This Task Force is being led by Anita Derks of Roche, with the support of the European Biotech Interest Group and other PDA volunteers. With a comment due date of November 30, 2007, work on this project is progressing well, and we’ll update you on the results in a future issue.

EC GMP Draft Annex 2: Manufacture of Biological Medicinal Products for Human Use:

Yet another European proposal is receiving attention from our quality and regulatory colleagues. The European

This Month’s Snapshot

Bob Dana, PDA

Task Force Update

ICH Q10, Pharmaceutical Quality Systems: One benefit to being as far behind as I am is that, at this writing, PDA’s comments on the proposed ICH Q10 Guideline entitled *Pharmaceutical Quality Systems* have now been approved by the Board of Directors and submitted to FDA. They will also be submitted to the EMEA; however, logistics still need to be worked out to allow their submission to Japan. If I’d met the intended time line for this column, the comments would have still been a work in process. Our comments were strongly supportive of the basic principles outlined in the guidance, including areas such as life cycle thinking, management responsibility and expectations for escalation as necessary. We did, however, offer some suggestions and recommendations for improvement to the draft guidance, including improved wording for the tables discussing implementation examples, and the annex which discussed opportunities to enhance science and risk based regulatory approaches. The comment transmittal letter and PDA’s comments can be seen at the PDA website, www.pda.org/regulatorycomments. The contents of the letter are also reproduced on p. 36 I’d like to thank the PDA volunteer members and staff who worked long and hard to develop and finalize these comments.

EMEA Contents of Batch Release Certificates for IMPs: As reported last month, a PDA task force chaired by Karen Ginsbury, PCI Pharmaceutical Consulting, had finalized comments on a proposed EMEA rule on the Batch Release Certificate for Investigational Medicinal Products. The comments were approved by the PDA Board of Directors and submitted to EMEA. The transmittal letter appears on p. 34, and the full letter and comments grid are available at www.pda.org/regulatorycomments.

EMEA Draft Guideline, Monoclonal Antibodies—Production and Control: Another PDA Task Force is currently working to develop comments on a proposed EMEA Guideline entitled *Guideline on Production and Quality Control of Monoclonal antibodies and Related Substances*. This Task Force is being led by Anita Derks of Roche, with the support of the European Biotech Interest Group and other PDA volunteers. With a comment due date of November 30, 2007, work on this project is progressing well, and we’ll update you on the results in a future issue.

EC GMP Draft Annex 2: Manufacture of Biological Medicinal Products for Human Use: Yet another European proposal is receiving attention from our quality and regulatory colleagues. The European
Advisory Board Watch

RAQC—What and Who Is It?
In reading the above and last months entries about our comments, you might be wondering how this process works and who provides oversight for it. That’s the work of PDA’s Regulatory Affairs and Quality Committee (RAQC), led by Committee Chair Zena Kaufman (Abbott) and newly named Co-Chair Steve Mendivil (Amgen). Congratulations Steve! RAQC is currently composed of fifteen quality and regulatory professionals for the Asia Pacific, European, and the North American regions. Visit the Quality and Regulatory section of the PDA website for a complete listing of RAQC members.

The Committee typically meets 10–2 times a year, either in person or by teleconference, to consider global regulatory issues and evaluate which ones impact PDA and our membership. For those that do, a Task Force is developed and they go about the work of developing PDA comments. These comments are then reviewed and approved by the Committee and ultimately the PDA Board before submission to the appropriate regulatory authorities. Because comment periods, especially in the U. S., tend to be rather short (60–90 days) and time must be left for the review and approval process, the work of the Task Forces is intense and concentrated into a compressed time frame, generally 30–45 days. As you might imagine, this makes for some interesting teleconferences! As of the middle of September, RAQC had developed comments on 5 new regulatory initiatives this year, so the Committee and its Task Forces are keeping busy on that score. Committee members also contribute to the planning process for our various regulatory meetings, including our signature PDA/FDA and PDA/EMEA meetings. Members serve a three year term and can renew once. If you think you would be interested in being considered for RAQC membership, please let Iris or me know.

Interest Group Briefing
Quality Systems Interest Group: We’ll talk about Interest Groups in more detail in an upcoming issue, but I did want to call attention to the Quality Systems Interest group, led by Dave Mayorga of GQA Consulting. They are currently in the process of redefining the objectives and expectations of their Interest Group, and recently formed a Steering Committee to help focus the process. You can see what’s going on by visiting their Interest Group site on the PDA home page. I’m sure Dave and his Steering Committee would welcome your input. Email your suggestions and thoughts to him at david@gqaconsulting.com.

Regulatory Relations
PDA Participates in EMEA GMP & GDP Working Group Interested Parties Meeting and ICH Q10 Briefing for Industry
On September 26, the EMEA Inspections Sector hosted the 2007 “Interested Parties” meeting at the EMEA headquarters in Canary Wharf, London. The interested parties meeting (IPM) is an opportunity for discussion between inspectors and industry representatives on the current GMP topics of interest. Immediately following, the EMEA hosted a briefing for the same audience on an overview of the ICH Q10 step 2 draft.

On the GMP front the IPM addressed the updated work plan for the GMP/GDP working group, a revision to Chapter 5 of the EU GMP guide on raw materials, discussion on atypical actives, and the role of the Qualified Person (QP) for active substances. The major topic of the IPM was the use and evaluation of the EMEA reflection paper on QP discretion in dealing with minor deviations from the marketing authorization (See the September 2007 Quality and Regulatory Snapshot in the PDA Letter, p. 30). This included generally positive reactions from industry on continued use and perhaps codification of the reflection paper into Annex 16 of the GMP guide. A unified industry position was created and presented by EFPIA as part of the discussion.

On the Q10 front, a briefing was given for industry regarding the current status and possible impact of Q10. The briefing was moderated by Emer Cooke, head of the Inspections Sector, and included presentations by Neil Wilkinson, AstraZeneca (representing EFPIA); Jacques Morenas, AFSSAPS, France; and Ian Thrussell, Senior Inspector, MHRA, UK. The briefing demonstrated the joint commitment by the regulators and industry to make Q10 a useful and valuable step for both parties, and for the patient.

PDA attendees included Stephan Roenninger, Roche; Peter Reichert, Novo Nordisk; Gabriele Gori, Bausch & Lomb; Claudia Nardini, Kedrion; Peter Gough, David Begg and Associates; and Jim Lyda, PDA.

PDA Submits Results of EMEA QP Discretion Survey
As reported last month, PDA collected survey results on the EMEA Reflection Paper on Quality Person Discretion for Dealing with Minor Deviations. The results have been approved by PDA’s Board of Directors and submitted. Turn to page 32 for the complete letter and the survey results.
PDA Submits QP Survey Results

18 September 2007

Mr. David Cockburn
European Medicines Agency
Inspections Sector
7 Westferry Circus
London E14 4HB
United Kingdom

Regarding: Reflection Paper on a Proposed Solution for Dealing with Minor Deviations from the Detail Described in the Marketing Authorisation for Human and Veterinary Medicinal Products (including biological products)

Doc. Ref. EMEA/INS/GMP/71188/2006, 10 March 2006

Dear Mr. Cockburn:

PDA is pleased to provide requested information to the EMEA on the subject reflection paper in the enclosed attachment. Please note that the information and statements in this letter do not represent any official position of the Parenteral Drug Association. Rather they represent raw data and responses from volunteer members, or associates of members, responding to the questions presented by the EMEA. In some cases PDA staff has drawn inferences on the respondent characteristics using professional judgment and knowledge of the survey process.

We trust that this information will be helpful to the EMEA in improving the guidance surrounding the QP duties in Europe. If you have questions please contact me, or my colleague Jim Lyda (lyda@pda.org), who did most of the staff work on this survey.

With very best regards,

Georg Roessler, Ph.D.
Senior VP, PDA Europe
Roessler@pda.org

Cc: J. Lyda, R. Levy, R. Dana, Z. Kaufman

Survey Responses by EMEA Question

1. Did you find the Reflection Paper helpful? (of 23 responses)
 - Yes 20 (87%)
 - No 3 (13%)

2. How many batches in last year did QPs follow recommendations to certify/release?

<table>
<thead>
<tr>
<th>No Response / Not Applicable</th>
<th>0</th>
<th>1-2</th>
<th>3-5</th>
<th>6-10</th>
<th>11-20</th>
<th>21-50</th>
<th>51-100</th>
<th>101+</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

3.1 How many batches failed due to minor deviations for which the reflection paper did not provide solution?

<table>
<thead>
<tr>
<th>No Response / Not Applicable</th>
<th>0</th>
<th>1-2</th>
<th>3-5</th>
<th>6-10</th>
<th>11-20</th>
<th>21-50</th>
<th>51-100</th>
<th>101+</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>13</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

5. Should the principles in the Reflection Paper be incorporated into Annex 16 of the GMP Guide? (of 23 responses)

 - Yes 20 (87%)
 - No 3 (13%)

PDA INFO ON QP DISCRETION

Methodology | Responders | Comments

- This info not official position of PDA
- It is raw responses to verbatim EMEA questions
- Input derived from on-line survey tool
- Invited volunteers for survey from global members
- 47 volunteered to take survey; 24 actually did
- Majority claimed to be QP or QP qualified
- Majority are from Europe
- Most from ‘small to medium’ size companies
- ‘yes/no’ answers gave very clear outcome
- Narrative answers conflicting and/or unclear
Our Non-Aspiration Aerosol Container Design Assures Sterile Alcohol is Used Each and Every Time.

DECON-AHOL WFI Sterile

- Made with USP Water for Injection (WFI).
- USP LAL tested and filtered at 0.2 microns.
- Reduces pyrogens in the aseptic area.
- Completely documented, traceable and validated as sterile (10-6 SAL).
- Our lot specific sterile testing package accompanies all orders.
- Sterility shelf life is validated for 3 Years.
- Eliminates in-house manufacturing.
- Double bag packaged and gamma radiated.
- Available in 70% USP tested formula.
- Validated in-use expiration.

11 oz Aerosol Mist or Stream
16 oz Trigger Spray with Attached Top
8 or 16 oz Squeeze with Attached Top
1 Gallon
5 Gallon

Veltek Associates, Inc. (610)-644-8335 www.sterile.com

SUPERIOR PRODUCTS • SUPERIOR IDEAS • SUPERIOR SOLUTIONS

Innovative Clean Room Products
PDA Comments on EMEA Batch Release Certificate

For the complete comments grid, visit www.pda.org/regulatorycomments.

31 August 2007

Mr. David Cockburn
European Medicines Evaluation Agency
7 Westferry Circus
London E14 4HB
United Kingdom

Dear Mr. Cockburn:

PDA is pleased to have the opportunity to provide comments on the draft “Content of the Batch Release Certificate Referred to in Art.13.3 of Directive 2001/20/EC”. Our comments were prepared by a group of member experts in this field. Our comments are attached in specific detail in the requested EMEA format. These comments are based on the broader issues outlined below.

The intended scope of the certificate may not fully address problems related to patient specific packaging and issues arising from preparation of supplies for blinded clinical trial studies:

1. Comparator products should be generally excluded from the scope of this guidance. It is almost impossible to get sufficient information to prepare a meaningful certificate on a competitor product. There is also the recognition that marketed products are authorized for marketing in a large part due to evidence demonstrating satisfactory GMP compliance and manufacturing controls.
2. Placebos can also be difficult to cover with a meaningful certificate especially when imported from outside the EEA or from countries where no mutual recognition has been stipulated; so certain adjustments must be considered.
3. The integrity of blinding must be preserved. The batch release certificate must therefore be designed to maintain the blinding of the study. The current guidance may possibly result in a certificate that risks revealing the blinding at the study center.

We believe the EMEA has great discretion to adopt our proposed changes, as the wording of Article 13.3 of the directive, and the wording of Annex 13 are somewhat general.

If I can be of further assistance, please feel free to contact me, or our Director of Regulatory Affairs, Jim Lyda at: lyda@pda.org.

With very best regards,

Georg Roessling, PhD
Senior Vice President
PDA Europe
Built for Speed

0 to 1m^3 in 10 Minutes

World's Fastest Airborne Particle Counter at 100 LPM

The new APC M3 measures one cubic meter (m^3) of air in just 10 minutes. For over 10 years, Biotest has been a global leader in the development of airborne particle counters. Now, Biotest introduces the world's first portable airborne particle counter to sample at a rate of 100 LPM. The APC M3, built for speed and reliability, can reduce the time it takes to monitor your cleanroom by as much as 70%.

- Download utility software supports 21 CFR Part 11
- Custom size channels from 0.3 μm to 100 μm
- Rechargeable lithium-ion battery
- Extended laser life
- 75 and 50 LPM units also available

So get in the fast lane. Start saving time and money today.

66 Ford Road, Denville, NJ 07834 USA
Tel: 800.522.0090 Fax: 973.625.5882 www.BiotestUSA.com
PDA Comments on Q10 Pharmaceutical Quality Systems

October 9, 2007
Division of Dockets Management (HFA-305)
Food and Drug Administration
5630 Fishers Lane, RM 1061
Rockville, MD 20852

Dear Sir/Madam,

PDA is pleased to offer comments on the Draft Guidance entitled Q10 Pharmaceutical Quality Systems, as published in the Federal Register on July 13, 2007. PDA is a non-profit international professional association of more than 10,000 individual member scientists having an interest in the fields of pharmaceutical, biological and device manufacturing and quality. Our comments were prepared by a global group of PDA quality system experts and are attached in a spreadsheet with specific detail. PDA appreciates the opportunity to offer comments on this important document and wishes to thank the FDA for the opportunity to do so.

PDA strongly supports the concepts of life cycle thinking that are evident throughout the document and believes that companies embracing these concepts will facilitate the creation, seamless transfer, and maintenance of product and process knowledge. We also salute the articulation of management responsibility as well as escalation expectations—a quality system cannot be successful without the full endorsement and engagement of management. And finally, PDA appreciates that the document facilitates the concepts of continual improvement of the product, processes, and quality systems to assure capable and controlled operations.

Broadly speaking, and to further strengthen the document, we offer the following general comments. More detailed comments and suggestions for rewording are included in the attached spreadsheet which accompanies this letter. For ease of reference, we have attached a Word version of the original Guideline with line numbers added, and have referenced our comments by Section and line number.

1. While PDA enthusiastically endorses the concepts of life cycle thinking, we believe the tables could be improved with more meaningful examples. We have provided detailed comments for the tables in the attached spreadsheet.

2. The document provides commentary on the alignment of quality objectives with a company’s strategic plans as well as the development and review of key performance indicators. We strongly support the development of quality objectives but find guidance on the alignment of those objectives to a company’s “strategic plans” too prescriptive given the diversity in size and management approaches across the companies to which this guidance will apply. We are proposing the same intent with different language, replacing the words “strategic plans” with “company’s corporate strategy and direction”. We also find the terminology of “key performance indicators” to be less appropriate than the use of “performance metrics”. For many companies key performance indicators are synonymous with financial results.

3. Finally, we have added wording throughout to emphasize the importance of defining roles and responsibilities as well as decision making processes.

Again, PDA appreciates the opportunity to comment and offers these suggestions for your consideration. We believe that these comments will serve to streamline and strengthen the guidance and will create a document that will better serve the needs of both regulators and industry.

We would welcome the opportunity to participate in a public discussion of these and other comments which FDA may receive on the draft guidance, and would be happy to discuss the details of such a meeting and contribute to the planning process, should you wish to pursue that concept.

If you need further clarification, please do not hesitate to contact me.

Sincerely,

Robert B. Myers
President, PDA
Commission has proposed a revision to Annex 2 of the GMP Guide (Manufacture of Biological Medicinal Products for Human Use). Comments on this document are due March 14, 2008, so now would be an excellent time to get involved and volunteer to serve on the Task Force which will develop PDA's comments (new members especially—are you listening!). If you attended the new member breakfast or the breakfast session summarizing the process used to develop PDA's comments, as well as recently submitted comments, you already know something about how this works. I do not mean to exclude veteran members; your expertise would be appreciated as well. Volunteering is fun—hard work, but still fun—and it's a great way to meet other members and expand your networks, as well as contributing to a worthwhile PDA activity. Both BioAB and RAQC are interested in this, so if you are interested in volunteering, contact me (dana@pda.org) or Iris Rice (rice@pda.org).

PDA Web Seminars are a cost-effective, high-quality training option for professionals wanting to gain the latest information about bio/pharmaceutical sciences and technology—with minimal impact on your time and budget. All you need is a touch-tone telephone, computer and Internet connection to participate in a session.

PDA OFFERS QUALITY TRAINING IN IRELAND THIS FALL!

CORK, IRELAND
TRAINING COURSE SERIES
15-16 November 2007
Cork, Ireland
www.pdatraining.org/cork

- Integrating ERP Systems into a Regulated Environment: Characteristics of Successful Implementations and What You Should Know!—New Course!
 15-16 November 2007

- Implementation of PDA’s NEW Technical Report No. 1—New Course!
 15-16 November 2007

- Implementation of PDA’s NEW Technical Report No. 39—New Course!
 15-16 November 2007

- Design of Experiments for Efficient and Practical Assay Development and Validation
 16 November 2007

DUBLIN TRAINING COURSE SERIES
12-14 December 2007
Dublin, Ireland | www.pdatraining.org/dublin

- Assessing Safe and Effective Medicinal Products – Registration of Biopharmaceuticals in a Global Environment – New Course!
 12 December 2007

- Process Validation for Biologicals
 12 December 2007

- Cleanroom Microbiology Workshop
 12-14 December 2007

- Biopharmaceutical QA/QC Strategy for Senior Management
 13 December 2007

- GMPs for Biotech APIs – New Course!
 13 December 2007

- Preparing for a Passing an FDA/EU Inspection – New Course!
 14 December 2007

- What Every Biotech Startup Needs to Know About CMC Compliance
 14 December 2007

REGISTER TODAY! Visit www.pdatraining.org for information and to register online. For questions, please contact Jessica Petree, Manager, Lecture Education, petree@pda.org. Tel: +1 (301) 656-5900 ext.151.
Finding Creative Ways to Connect Members: The Southern California Chapter’s Corporate Outreach Program

Emily Alesantrino, PDA

Many PDA Chapters span large geographic areas, creating daunting challenges to chapter leaders trying to provide services to their entire membership. The sprawling Southern California Chapter recently formed a “corporate outreach program” to help connect members throughout its large region.

PDA recently spoke to Southern California’s Chapter President Saeed Tafreshi, Intelect Corporation, and the new Chapter “Corporate Outreach Coordinator” Ruchika Raval, Global Biopharmaceutical Regulations, about the challenges and solutions associated with operating a PDA chapter with a large geographic territory. The Southern California Chapter serves members in three large California counties: Ventura, Los Angeles and San Diego. As a result, the chapter started exploring innovative approaches to best serve the membership.

“From day one we realized there was a big disconnect between our PDA chapter and our members,” said Tafreshi. “So, we started calling people—we’ve talked to almost every member in our area over the past year.” To deal with the chapter’s evident communication obstacles, Raval along with Tafreshi instituted the Corporate Outreach Program. Corporations with a large number of PDA members in the chapter territory are identified and used as communication vehicles for the chapter. Representatives within these targeted corporations are asked to set up an internal board and act as liaisons between the Southern California Chapter and PDA members within their company and/or local community.

“It has been incredibly rewarding,” commented Raval. “We have approached several companies, and we are increasing the database of speakers. Moving forward, we will continue to add corporations. The more companies in the program, the more members our events reach, and their feedback allows us to tailor the events to their needs. It is also rewarding for the volunteers. We all see the need to have local working groups in each area—it helps move the program forward. When corporations appoint their representatives, they see this as part of their employee career development programs.”

Tafreshi added, “The idea was to create a communication system that would last throughout the years—people can come and go, but systems can stay.”

Company representatives support the chapter by opening two-way communication between the chapter members and leaders. Relaying important chapter information and cultivating program ideas with chapter members are the key responsibilities of these volunteers. “Listening to chapter members is extremely important; if there is not a formal vehicle available, set one up,” Raval stated. Because feedback is given directly from chapter members to leaders, targeted and relevant programs can be developed for these members. “This is a practical communication tool, because we realize it is impossible to be in contact with every member,” noted Tafreshi.

The PDA Southern California Chapter has also found some unique ways to tackle the problem of member outreach. One idea that is currently being explored is to hold an event on a boat or cruise ship. The cruise would pick up and drop off at three locations along the coast, and the meeting would be held out at sea. “What is the difference if members go to a hotel or on a cruise? Either way, we will offer interesting programs and top speakers,” said Tafreshi.

A second idea has already been implemented. Using web-based programming, the Southern California Chapter holds simultaneous meetings in multiple locations. Meeting speakers can physically be located at one chapter location but heard at other meeting sites. For example, a recent talk given by Jaspreet Sidhu, PhD, VP, Business Development, Molecular Epidemiology, on microbial testing was heard in both Irvine and Thousand Oaks. A presentation by Ron Tetzlaff, PhD, VP, PAREXEL, was heard by members in the cities of San Diego and Irvine and at sites in Ventura County. The advantage of this type of programming is that questions and answers can be asked and answered live.

For a chapter that has members in Los Angeles to San Diego, eliminating the commute is a key factor to more member participation. “By using the technology available, individuals in all locations have the opportunity to ask questions and interact through real-time feed. This option dramatically increases the number of chapter members who can participate in an event,” commented Tafreshi. “We’re doing this for the love of the industry, for the love of what we do. You know, we’re all professionals and have taken something out of this industry, and this is the opportunity for us to put something back,” said Tafreshi.
Volunteer Spotlight

Name: Bob Dana
Company: PDA
Title: Vice President, Quality and Regulatory Affairs
Education: BS, Pharmacy, University of Connecticut; Non-degree graduate study program in business administration, Syracuse University
PDA Join Date: 1985

Areas of PDA Volunteerism:
Member of Regulatory Affairs and Quality Committee, Inspection Trends/Regulatory Affairs Interest Group Leader, Quality Systems and Regulatory Affairs Interest Group Section Leader, Instructor for PDA’s Training and Research Institute, Speaker and moderator at numerous PDA meetings, Former PDA Director, Past Program Planning Committees: Spring Conference (Chair), Annual Meeting and PDA/FDA, Past member of several PDA task forces, including co-chair of task force responsible for developing PDA comments on May 1996 proposed changes to FDA’s GMP regulations

Professional Awards Won:
I received a Distinguished Service Award from PDA in 1998.

Interesting Fact about Yourself:
When I’m not busy with PDA and the weather is nice, which of course we don’t have a lot of in Syracuse, I play golf and I fly fish. I tie flies in the winter and I fly fish in the summer, spring and fall.

Of your PDA experiences, which stand out the most?
One of the things I remember more than anything else is the work we did to put together PDA’s comments on the proposed GMP regulations in 1996.

Which member benefit do you most look forward to?
The benefits I most look forward to on a repetitive and ongoing basis are the PDA Letter and the PDA/FDA conference. I really enjoy looking through the Letter. I typically look through it and read most of the articles in it. I always did read most of the articles in it. The Letter is pretty much a cover to cover experience for me. And for the PDA/FDA conference, I’ve been going since the meeting began. I’ve just always found it to be a really enriching experience. It is great in terms of finding out what is going on in the regulatory world, which is a piece of the world that is important to me and always has been. It is also a great opportunity to meet a lot of the people or “re-meet” a lot of the people I’ve known over the years with PDA. It’s a chance to renew old friendships and make some new ones.

Which PDA event/training course is your favorite?
Of all the repetitive events, the PDA/FDA conference is probably my favorite PDA event. I also think the work PDA’s Training and Research Institute has done over the years has really been great work. TRI just celebrated its 10th anniversary. I was involved with the beginning of the TRI experience, certainly in its early stages. I watched it struggle a bit in its early years and then grow to what it has become now. I just think it’s a terrific value and benefit, and there is no place like it in the industry that provides the physical facility and resources combined with the hands-on knowledge and education that TRI does. We have such a terrific cadre of instructors, and the new facility is going to be great. TRI is a great place to get involved. Gail Sherman and TRI are always looking for new instructors and new course ideas.

How has PDA benefited you professionally?
PDA has done a lot for me professionally. It certainly has made me a more knowledgeable person. I am much more aware of what is going on in the global arena. So, knowledge and awareness are the key benefits for me. The relationships I’ve made through my membership are also a very big piece of what I get out of PDA. To me, these relationships are really important. I have met a lot of terrific people throughout my years with PDA. I count a great number of them as personal friends, which has been a very rewarding experience for me. They are all great sources of knowledge as well—they’re people I can call on if there is information I am looking for. I can also use them as springboards to sound ideas off of, and I can provide their names to people who are looking for information in areas that I’m just not that familiar with. I think these are the two biggest benefits—the knowledge I’ve gained and the relationships I’ve made. Actually, it’s probably the other way around—it’s really the relationships and friendships I’ve made and the opportunities I have to keep them going. And then it is how these relationships play into knowledge and awareness for me.

People ask me why I wanted to take a job with PDA after all the years I have worked, and you have to remember I worked in the industry for a lot of years. I always viewed PDA as the primary, absolutely best source of scientific, technical and regulatory information in the industry. I just didn’t think anybody else came close to PDA in terms of what it was able to put together, the positions it was able to take, and the knowledge it was able to pass on to its membership, or to the membership and the industry as a whole. So to me, PDA was always the number one organization anywhere in the world. I have been a volunteer member for over 20 years, so when I had the opportunity to come and work here and maybe contribute something, give something back to the organization that has done a lot for me, I thought it was a great opportunity.
PDA Welcomes New Members

Nana Abe, JMS
Colin Abercrombie, Genzyme
Laura Abrams, GlaxoSmithKline
Frank Abbato, DME Alliance
Paula Adams, Anesiva
Michael Adler, F. Hoffmann-La Roche
Arun Agarwal, Becton Dickinson
Maria Ohrner, Octapharma
Daniel Allocco, Precision Pharma Services
Michael Andrew, Medimmune
Wesley Ange, Clarkston Consulting
Hiroaki Arai, Daiichi Sankyo
Jonna Arentoft, Nycomed
Benny Auyeung, Schering-Plough
Jim Axtelle, Insert Therapeutics
I Gusti Putu Bagus Diana Virgo, Kalbe
Sahar Bahrani, Baxter
Sanjay Bajariya, Claris
Deana Baker, Criteria Validation
Sarah Balmer, sanofi pasteur
Jinming Bao, Eastbound Synopharma
Amy Barnard, Medimmune
John Barnes, Genentech
Thomas Barnhart, Medimmune
Megan Barth, Sterigenics
Amy Baumgard, Ben Venue
Roy Behrman, Forest Laboratories
Shirish Belapure, Zydus Cadila
Steve Belikoff, Advanced Medical Optics
Arthur Bergeron, Bristol-Myers Squibb
Alpabhn Bhakta, Aderans Research
Soumendu Bhattacharya, Schering-Plough
Christy Bigelow, Emergent BioSolutions
Gabriel Bikah, Merck
Patrick Blacha, Eli Lilly
Michelle Blackwell, GlaxoSmithKline
Derek Blaettert, Genentech
Obed Boateng, Allergan
Bernd Boedecker, Trade & Industrial Inspection Agency
Roberto Guido Bonacchi, Consultant
Lilla Bouilatitene, Sandoz
Chad Boykin, GlaxoSmithKline
Sharon Braithwaite, sanofi pasteur
Megan Brandt, PDL Biopharma
Marilyn Brandt, ImClone
Yael Brenner, Teva
Eri Brodewer, Ben Venue
Jeanette Brill, Jerini
Kimberly Buchanan, Merck
June Burge, Wyeth
Kathie Burkett, CSL
James Butler, SGS
Linda Calderbank, TEVA
Johnna Calverase, Novo Nordisk
Douglas Campbell, U.S. FDA
HongHoa Cao, DePuy Spine
Lili Cao, SFDA
Jeff Carey, Novavax
Michael Carlson, Microtest
Daniel Carpenito, Commissioning Agents
Fiona Carroll, GE Healthcare
Bobbie Carter, Arena Pharmaceuticals
Alloin Cecile, GlaxoSmithKline
Krishna Chandran, Sartorius
Sonja Chatellier, bioMerieux
Shaoqiang Chen, JPT Consulting
Yizhen Chen, Shanghai Municipal FDA
Ankita Chitre, Cell Genesys
Choi Yiau Chong, Shihuan Pharmaceutical
Xiuaii Chu, JPT Consulting
John Clarke, Akorn
Nathaniel Clements, Bristol-Myers Squibb
Mark Copeland, Eli Lilly
Brian Corrigan, Wyeth
Joseph Cramer, Hospira
Linda Critelli, Forest Laboratories
Ginamarie Currao, Luitpold
Soren Damkaer, Novo Nordisk
John Davidson, Wyeth
Vonna DeArmond, Imclone
Michele Delaney, Stryker
Paul Derbyshire, Derbyshire Validation
Martin DeStafney, Cryolife
Frederick DeVries, Jr., PAREXEL
Sasa Dizdar, Pliva Croatia
Tara Dougherty, Tengion
Elizabeth Draminski, Emergent BioSolutions
Edward Duffy, Princeton
Anthony Durning, Cardiokine
John Dziuba, Emergent
Fabiola Echegaray, Cetco
Ulf Edberg, Octapharma
Loraian Elan, Baxter
Steven Ellers, West Pharmaceutical Services
BjAfnn Elowsson, REXPAC
Karen Emborg, CCURE
Scott Engelking, Watson
Arthur Fabian, SST
Laijai, Health Sciences Authority
Barry Fairand, Sterigenics International
Yuming Fang, Shanghai Institute for Food and Drug Control
Thomas Feller, Bristol-Myers Squibb
Adam Fenimore, Alkermes
Niki Fidopiastis, Sterigenics
Kelly Field, Pfizer
Clay Flowers, Northern Lipids
Martha Folmsbee, Pall
Lisa Foster, Sterigenics
Lee Fox, Wyeth
Christina Frey, GlaxoSmithKline
Sheldon Fry, sanofi pasteur
Christine Fuerst, Vetter
Felix Fukuda, AstraZeneca
Eric Fukumitsu, Genentech
Eran Gabbai, Do-Coop Technologies
Edward Gallagher, CSL Behring
Huijun Gao, Shanghai Municipal FDA
Melissa Garcia, MG Consulting
Gregory Garland, sanofi pasteur
Janet Gent, Pfizer
Carl Gentry, Wyeth
Nancy Giard, Genzyme
Megan Olen, Sorin Group
Lynn Orlowitz, Enzon Pharmaceuticals
Matthew Ostrowski, Pfizer
Robert Paccasassi, Biogen Idec
Janet Pallante, Schering-Plough
David Papalia, Veltek Associates
Syo (Jenny) Park, IOMAI
Kandarp Patel, Baxter
Ranjana Pathak, Endo Pharmaceuticals
Bob Pecherle, CIBA Vision
Sandy Pei, JPT Consulting
Craig Peluso, Shire
Todd Perez, Leica Microsystems
Carlos Alberto Pinzon Quiroga, BPM Andina
Newsha Poursohi, Genentech
Jayasri Prabakaran, Keck Graduate Institute of Applied Life Sciences
John Price, Berkshire
Jessica Pytko, SAFC Biosciences
Ma Qinghua, Watertown Pharmaceutical Equipment
Karen Quarford, ZymoGenetics
Antonio Quinones, Fluor Daniel Caribbean
Chris Ramana, CIBA Vision
Parvin Rastegar, Keck Graduate Institute of Applied Life Sciences
Tom Rebne, Solvay Pharmaceuticals
Mathilda Reeves-Jones, Eli Lilly
Matthew Resnner, Enzon Pharmaceuticals
Ken Rhone, Emerson Process Management
Sean Richardson, Solstice Neurosciences
Scott Richmond, Human Genome Sciences
Mayra Rivera-Ramos, GlaxoSmithKline
Rex Roberts, West Pharmaceutical Services
Donald Rogers, Bristol-Myers Squibb
Tone Rojahn, GE Healthcare
Marc Roman, Biolex Therapeutics
Michael Rooney, BioTechLogic
Joseph Runkle, West Pharmaceutical Services
Niesha Russell, Shire
Paul Sachtleben, SciLucent
Yuka Saika, Nihon Pharmaceutical
Sanjay Samudre, CIBA Vision
Megan Samuel, Abraxis
Robert Sandberg, Array Biopharma
Ivette Santana, sanofi pasteur
Peter Sargent, Scipac
Yoshitaka Satoh, Nishin Pharma
Katherine Schneider, Fleming Pharmaceuticals
Philippe Schoone, Merck
Stefan Schuber, USP
Beth Schulingen, OSG Norwich Pharma
Jeffrey Schultz, RDPAC
Denise Sciascia, Bristol-Myers Squibb
Erisken Serap, Hospira
Anand Sewnath, Sewnath Engineering
Pranav Shah, Abraxis
Terrence Shelley, Eli Lilly
Prashanth Shetty, SAP
Takeshi Shin, Senju Pharmaceuticals
Wyn Shive, Global Biologics Supply Chain
Cara Sholter, MedImmune
Suveer Shrivastava, Nicholas Piramal India
Liu Shulin, Hebei Huali Pharmaceuticals
Susan Shumate, Organon Teknika
Ajit Simh, Arena Pharmaceuticals
Arlene Simmons, Biokinetics
Regina Simmons-Bell, Human Genome Sciences
John Sirna, Apotex
Marie-Anne Slaney, Therapeutic Goods Administration Library
Leonard Smith, U.S. Army Medical Research Institute of Infectious Diseases
Ryan Smith, CIBA Vision
Douglas Smith, Valitech Compliance
Jason Snyder, Diosynth
Paul Snyder, Novartis
Ari Solbel, West Pharmaceutical Services
Jeffrey Soderberg, Mediatech
Lise-Lotte Soerensen, Novo Nordisk
Alan Solomon, Baxter
Antonio Souto, Wyeth
Alex Spencer, Ben Venue
Paula Spencer, Amgen
Ramakrishnan Srikumar, Allergan
Nicole St. Lawrence, Microtest
Kathryn Stein, MacroGenics
Dirk Steinhoff, Institut Straumann
Marco Stephan, Sao Paulo University
Jeffrey Stockman, General Electric
Peter Stojnic, NNE Pharmacmaplan
Scott Stratton, Baxter
Greg Strickland, Mentor
Curtis Strother, Targanta Therapeutics
Emily Stump, PDM Core
Denise Sturdevant, Baxter
Jeffrey Su, sanofi pasteur
Nanda Subbarao, Biologics Consulting Group
Shuichi Sugie, Daiichi Sankyo
Soo Kyung Suh, Korea FDA
Fang Suming, Suzhou Dawnrays Pharmaceutical
Susmitha Sunkara, Bayer
Todd Sunstrom, Cephalon
Christian Supina, Baxter
Rocco Surace, Wyeth
Linette Swayne, Alkermes
Chiang Syin, FDA
Eiji Takahashi, Kyowa Hakko Kogyo
Kazunori Takamoto, Medtronic
Christopher Tam, Septacor
ChinBin Tan, Millipore
Tohru Tanami, Taisho Pharmaceuticals
Minhao Tang, Shanghai Municipal FDA
Constance Taylor, Merck
Matthew Tench, Ben Venue
Marianne Thompson, Alexion Pharmaceuticals
Timothy Thompson, Eisai
Paul Thompson, Bausch & Lomb
Stacey Thompson, Baxter
Anders Thorn, Novo Nordisk

If your information appears inaccurate in this list, please visit www.pda.org to update your profile or email changes to info@pda.org.
Chapter Contacts

The following is a list of the PDA Chapters, organized by the regions of the world in which they are located. Included are the Chapter name, the area(s) served, the Chapter contact person and his or her email address. Where applicable, the Chapter’s website is listed. More information on PDA Chapters is available at www.pda.org/chapters.

<table>
<thead>
<tr>
<th>Asia-Pacific</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia Chapter</td>
</tr>
<tr>
<td>Contact: Anna Corke</td>
</tr>
<tr>
<td>Email: acorke@medicaldev.com</td>
</tr>
<tr>
<td>India Chapter</td>
</tr>
<tr>
<td>Contact: Darshan Makhey, PhD</td>
</tr>
<tr>
<td>Email: dmakhey@hotmail.com</td>
</tr>
<tr>
<td>Japan Chapter</td>
</tr>
<tr>
<td>Contact: Katsuhide Terada, PhD</td>
</tr>
<tr>
<td>Email: terada@phar.toho-u.ac.jp www.j-pda.jp</td>
</tr>
<tr>
<td>Korea Chapter</td>
</tr>
<tr>
<td>Contact: Woo-Hyun Paik, PhD</td>
</tr>
<tr>
<td>Email: whpaik@hitel.net</td>
</tr>
<tr>
<td>Southeast Asia Chapter</td>
</tr>
<tr>
<td>Contact: K. P. P. Prasad, PhD</td>
</tr>
<tr>
<td>Email: prasad.kpp@pfizer.com</td>
</tr>
<tr>
<td>Taiwan Chapter</td>
</tr>
<tr>
<td>Contact: Shin-Yi Hsu</td>
</tr>
<tr>
<td>Email: shinyi.hsu@otsuka.com.tw www.pdatc.org.tw</td>
</tr>
<tr>
<td>Europe</td>
</tr>
<tr>
<td>Central Europe Chapter</td>
</tr>
<tr>
<td>Contact: Andreas Wenng, PhD</td>
</tr>
<tr>
<td>Email: andreas.wenng@chemengineering.com</td>
</tr>
<tr>
<td>France Chapter</td>
</tr>
<tr>
<td>Contact: Jean-Louis Saubion, PhD</td>
</tr>
<tr>
<td>Email: ufch@wanadoo.fr</td>
</tr>
<tr>
<td>Ireland Chapter</td>
</tr>
<tr>
<td>Contact: Frank Hallinan</td>
</tr>
<tr>
<td>Email: hallinf@wyeth.com</td>
</tr>
</tbody>
</table>

| Israel Chapter |
| Contact: Raphael Bar, PhD |
| Email: rbar@pharmos.com |

| Italy Chapter |
| Contact: Stefano Maccio, PhD |
| Email: stefano.maccio@ctpsystem.com www.pda-it.org |

| United Kingdom |
| Contact: Siegfried Schmitt, PhD |
| Email: siegfried.schmitt@parexel.com |

<table>
<thead>
<tr>
<th>North America</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada Chapter</td>
</tr>
<tr>
<td>Contact: Patrick Bronsard</td>
</tr>
<tr>
<td>Email: patrick.bronsard@snclavalin.com www.pdacanada.org</td>
</tr>
<tr>
<td>Capital Area Chapter</td>
</tr>
<tr>
<td>Areas Served: MD, DC, VA, WV</td>
</tr>
<tr>
<td>Contact: Allen Burgenson</td>
</tr>
<tr>
<td>Email: allen.burgenson@lonza.com www.pdamidwest.org</td>
</tr>
<tr>
<td>Delaware Valley Chapter</td>
</tr>
<tr>
<td>Areas Served: DE, NJ, PA</td>
</tr>
<tr>
<td>Contact: Art Vellutato, Jr.</td>
</tr>
<tr>
<td>Email: artjr@sterile.com www.pdacapital.org</td>
</tr>
<tr>
<td>Metro Chapter</td>
</tr>
<tr>
<td>Areas Served: NJ, NY</td>
</tr>
<tr>
<td>Contact: Nate Manco</td>
</tr>
<tr>
<td>Email: natemanco@optonline.net www.pdametro.org</td>
</tr>
</tbody>
</table>

| Midwest Chapter |
| Areas Served: IL, IN, OH, WI, IA, MN |
| Contact: Madhu Ahluwalia |
| Email: madhu@cgxp.com www.pdamidwest.org |

| Mountain States Chapter |
| Areas Served: CO, WY, UT, ID, NE, KS, OK, MT |
| Contact: Sara Hendricks |
| Email: scarry@att.net |

| New England Chapter |
| Areas Served: MA, CT, RI, NH, VT, ME |
| Contact: Louis Zaczkiewicz |
| Email: lzaczkiewicz@hyaluron.com |

| Puerto Rico |
| Contact: Manuel Melendez |
| Email: manuelm@amgen.com |

| Southeast Chapter |
| Areas Served: NC, SC, TN, VA, FL, GA |
| Contact: Patrick Sabourin |
| Email: psabourin@clarkstonconsulting.com |

| Southern California Chapter |
| Areas Served: Southern California |
| Contact: Saeed Tafreshi |
| Email: saeedtafreshi@inteliteccorporation.com www.pdasc.org |

| West Coast Chapter |
| Areas Served: Northern California |
| Contact: John Ferreira |
| Email: jferreira@banzigersystems.com www.wccpda.org |
Programming Department Offers a Full Lineup of Conferences

The PDA Programs and Registrations Services Department is as busy as ever this autumn. We have just completed one of the most successful PDA/FDA Joint Regulatory Conferences to date in time to move on to the Visual Inspection Forum (Oct. 15-16), the 2nd Annual Global Conference on Pharmaceutical Microbiology (Oct. 29-31), and the Extractables/Leachables Forum (Nov. 6-8).

New this year is the PDA/FDA Co-Sponsored Conference Series on Quality Systems. This is an international conference series with meetings taking place in Bethesda, Md. (Nov. 1-2), Dublin, Ireland (Dec. 10-11), Beijing, China (Apr. 21-23) and Shanghai, China (Apr. 24-25).

We are very excited to share the experiences of expert professionals with the global community.

2008 is shaping up to be just as busy and exciting. To highlight a few events, PDA's 2008 Annual Meeting will be held at the beautiful Broadmoor Hotel and Resort in Colorado Springs, Colorado, Apr. 14-18. Through this meeting, PDA is committed to bringing the membership the latest information on science and technology innovations. For the first time, PDA is featuring celebrity keynote addresses from Linda Armstrong Kelly, the mother of Tour de France Champion Lance Armstrong, as well as Shelley Morrison, the actress who played Rosario on the NBC series Will and Grace. Both speakers will provide insight on their struggles when diagnosed and while coping with breast cancer and the role the pharmaceutical industry played in their recoveries.

Need to Fill These?

We Can Help.

Filamatic's® Liquid Filling Solutions Include:

- Clean Room Requirements
- Aseptic Filling Operations
- Liquid or Lyophilized Injectibles
- Microdose Pharmaceutical and Diagnostic Fills

Visit our web site for more information www.filamatic.com or call 800-526-1301.
PDA is proud of its decision to bring the Biennial Training Conference (May 19-23) back to New Orleans in 2008, which was previously cancelled due to the Hurricane Katrina. In addition to offering best practices in training, PDA volunteers plan to assist in this city’s economic recovery. More information on this effort will be included in upcoming issues of the PDA Letter and in the conference materials.

To best serve you, the Programs and Registration Services Department works in teams on each conference. There is a liaison to each program planning committee as well as a speaker manager and a dedicated registration person. In addition, the department designates an assistant director to oversee all conference logistics.

New innovations in registration help PDA deliver excellent customer service to conference/event attendees. A newly implemented “no call goes unanswered” policy requires that every call is answered by a customer service specialist. Over the next few months, PDA will implement a new event/registration management system and ask for your comments. This system will take the department to the next level, and the membership will surely benefit and see immediate results.

For more details on conferences and the web seminar program and for the department’s contact information, please visit www.pda.org. The Programs and Registration Services Department is here to ensure your best PDA experience.

What Other PDA Members Think of Validation of Analytical Methods for Biopharmaceuticals: A Guide to Risk-Based Validation and Implementation Strategies

“The book contains many new practical tips, tools, and case studies that will validation scientists and management to make good risk-based decisions during planning, execution, and post-implementation changes for all projects.

This book is therefore centered on what “sufficient performance” and “suitable for use” really mean for analytical methods. You will also learn what risk really means when it comes to analytical methods. How can we measure risk and how can we control this risk using well-designed validation studies.

Currently, regulatory guidelines provide only basic guidance for analytical method validation. Dr. Krause’s work builds on these basic regulatory guidance documents and provides several detailed validation practices, discussions, and case studies on the best-possible strategies to assist readers to make good decisions.

After reading this book, I felt a bright light focused on many of the items that I once considered hidden in a black box. I encourage validation scientist, quality and regulatory managers to read this thought provoking book to better understand how to effectively monitor your production processes and quality of your products. It will also allow you to prepare quicker and more robust regulatory filings.

I hope you enjoy the work in this book as much as I have.”

Martin VanTrieste
VP Quality, Commercial Operations
TRI has officially and ceremoniously opened its doors in Bethesda, Md. While we moved to our new location on July 2, we did not receive full occupancy until August 20, when the last inspector walked out as our “Aseptic Processing Training Program” students were walking in. We were holding our collective breath, knowing all the while that it would be just fine. To date, we have successfully run three laboratory courses—the “Environmental Mycology Identification Workshop,” “Downstream Processing: Separations, Purifications and Virus Removal” and of course the “Aseptic Processing Training Program” (all 10 days of it!).

I won’t tell you that the move went off without a hitch. As a matter of fact, the day we were scheduled to move from Baltimore to Bethesda, we learned that our movers forgot to schedule us. Fortunately, we were lucky to end up with a great evening crew who packed almost everything into the trucks for delivery to Bethesda the next day, or so we thought. A few weeks later we actually learned that we had left some equipment on the loading dock in Baltimore!

Our biggest challenge to date was getting the Fedegari Autoclavi autoclave in place. It was one of the hottest days in July—a Friday to be exact. We had been waiting patiently for our new autoclave to arrive from Italy, along with a Fedegari technician who had come all the way from Italy to assist with the installation. Around 9:00 that morning, a truck pulled up in front of the building and the driver informed us that she had a crate weighing about 1,700 kilograms (3,740 pounds). The truck didn’t have a liftgate and or a pallet jack, and we definitely didn’t have enough arms to budge that amount of weight. We called our shipper, and he showed up with another truck—still no liftgate or pallet jack. Around 3:00 that afternoon, we rented a forklift and a flatbed truck and managed to get the 1700 kilo crate to the ground. However, we couldn’t get the crate the additional 75 feet into our space. So, we spent the next three hours uncrating and dismantling what we could (thanks to PDA staff Frank Sarlo, Feng Chen, Bob Collier and Jason Brown) and trying to find movers or riggers who could move the bulk of the machine into place. Of course, no one could do anything until morning. As night came, we wrapped the remaining piece of equipment in blankets and bags, hired a security guard and called it a night. The next morning, armed with forklift and movers, the autoclave was finally moved into its permanent home. Now we are waiting for another piece of equipment—crated weight 800 kilos. This one will be a snap as long as we can get it off the truck!

As an aside, I want to thank our friends and colleagues at the University of Maryland Biotechnology Institute for performing the autoclaving for our first Aseptic Processing course for us at their facility since our autoclave wasn’t functioning yet.

I could tell you many other stories, probably best told over a glass of wine. The challenges were many, but the TRI staff accepted them head on and never gave up. I think TRI’s James Wamsley moved his cot into the office for the duration, and I’ll sure be happy to have a weekend at home one day soon! We still have some arranging and rearranging to do, but things are falling nicely into place. It’s amazing how everything somehow works out.

We dedicated the facility on September 26, just over 10 years after the original TRI was dedicated in Baltimore. We look forward to another successful 10 years and more in Bethesda.

Before I call it quits for this month, I’d like to remind you that we have two very important training programs coming up in Europe over the next few months. We will be conducting training on the newly revised Technical Report No. 39, Guidance for Temperature-Controlled Medicinal Products, with the authors as instructors in Berlin (Oct. 15-16) and Cork (Nov. 15-16). Also in Cork, we will be offering a training program on the revised Technical Report No. 1, Validation of Moist Heat Sterilization Processes. Experts who were key to the revision of this report, including PDA President Bob Myers, will facilitate the program. Please join us for these very important and new training programs.

Next month we will run a photo spread of the new TRI from the groundbreaking to the dedication—a true work in progress!
The Universe of Pre-filled Syringes & Injection Devices

November 27-28, 2007 • Berlin, Germany

Mark your calendar! Following three very successful meetings on pre-filled syringes, PDA is pleased to bring you The Universe of Pre-filled Syringes & Injection Devices again this year. Leading experts in drug and syringe manufacturing, regulation, product development and packaging will come together to share recent strides in this rapidly evolving technology.

For more information visit: www.pda.org/europe
or please contact: info-europe@pda.org
Sterile manufacturing is one of the most critical aspects of pharmaceutical production. For any individual in an industry or regulatory setting to judge with competence such manufacturing operations, many years of experience in this sophisticated area are needed. Sterile manufacturing, particularly aseptic production, is also a challenge for regulatory bodies and inspectorates enforcing legislation that might not fit the practical challenges.

The core issues of filling and capping will be featured topics of discussion during upcoming presentations at the Modern Aseptic Production conference in Södertälje, Stockholm, Sweden, Nov. 7-8. EU GMP Annex 1 is the regulatory basis for sterile manufacturing. The evolution of Annex 1 has been the result of many discussions leading to a prolonged consideration by the EMEA of input from the industry, scientific associations like PDA and individuals who specialize in sterile manufacturing. The version of Annex 1 recently adopted by the GMP working party at the EMEA will be discussed at this conference. The changes in the Annex, their interpretation, and the impact on a modern aseptic production will be reviewed with practical examples of sterile manufacturing sites.

Interestingly, the EMEA has published a report on GMP deficiencies observed in the decade from 1995 to 2005. In evaluating this document (Good Manufacturing Practice: An analysis of regulatory inspection findings in the centralised procedure), there are several interesting aspects worth noting when looking closer at the 9,465 observations listed.

Chapter 4.3 (“Comparison of deficiencies in the manufacture of sterile products versus nonsterile”) of

| Table 8 |
|-----------------|-----------------|
| | Non-Sterile | Sterile |
| Number of inspections | 186 | 249 |
| Number of critical deficiencies | 33 (0.88%) | 160 (2.77%) |
| Number of major deficiencies | 251 (6.72%) | 752 (13.00%) |
| Number of other significant deficiencies | 3451 (92.40%) | 4872 (84.23%) |
| Total deficiencies | 3735 | 5784 |
| Average deficiencies per inspection | 20 | 23 |

Table 8 is a comparison of the deficiencies found from 1995 to 2005 between manufacture of sterile vs. nonsterile medicinal products.
The report states the following: Table 8 makes a comparison between manufacturers of sterile products vs. nonsterile products. The average numbers of deficiencies observed in each category of these manufacturers were similar (20 for nonsterile vs. 23 for sterile). However, the deficiencies are distributed in a different manner, showing more higher-risk deficiencies (critical and major) for manufacturers of sterile products. This may be explained by the higher complexity of the sterile processes. Table 8 is presented with this article.

This data gives evidence to the statement made earlier that maintaining sterile manufacturing facilities and up-to-date processes is critical. Evaluation of the data shows the obvious impact of microbiological risks, environmental monitoring and control, sterility assurance and personal hygiene.

Facility design and maintenance show a similar high incidence in the deficiencies reports. This indicates that keeping facilities up to the expectations and managing them accordingly poses a big challenge for the industry.

In conclusion, it might be more than coincidence that the percentages of critical (Sterility: 29.0%; Facility: 28.0%) and major (Sterility 21.7%; Facility: 17.3%) observations of both aspects are very similar. Thus it can be interpreted that if the facilities have problems, these problems cause issues in sterile manufacturing areas.

The program for the PDA conference on Modern Aseptic Production illustrates that not only facility design, but also microbiology issues are areas for inspection and audit attention. As part of the conference, participants will have the opportunity to visit an AstraZeneca production facility to better understand the reciprocal dependence of sterility assurance and facility design.
Conference Report
Technology Transfer Today Highlights
Jim Lyda, PDA

PDA hosted its Technology Transfer Today conference in Basel on September 12-13. The attendees were greeted with a direct and useful survey of the status of site-to-site technology transfer in today’s environment.

Special recognition is in order for two of the presentations. First, the team from F. Hoffmann-La Roche, Hans Groeger, PhD, Juergen Nelis and Cristina Sanchez de Ulloa, presented a full, integrated session on their project to transfer almost 500 products—chemical, biotech and galenical—in the next few years. It was a stunning presentation that demonstrated the value of effective planning and execution of a project of this size. (See related diagram extracted from their presentation.)

On the regulatory side, GMP Inspector Bernd Boedecker, Gesundheitlicher Verbraucherschutz, who has recently joined the inspectorate after more than 20 years in the industrial pharmaceutical sector, gave a very detailed and inclusive talk on an inspectors view of tech transfers.

PDA thanks all the presenters and speakers for their time and dedication (see photos below).

Tech Transfer Speakers (l-r): Juergen Nelis, Cristina Sanchez de Ulloa, Bernd Boedecker and Hans Groeger

Tech Transfer Speakers (l-r): Philipp Goepel, Volker Eck, Claudia Nardini, Peter Smith and Jim Lyda, Siegfrid Schmitt

GE Sensing

imagination at work

confidence

■ noun. The belief that one can have faith in or rely on someone or something.

It’s the security you feel when your data is accurate and protected with the new Kaye ValProbe® wireless validation system.

It’s the robust, redundant RF Mesh technology integrated with the best validation equipment available to deliver a new level of flexibility and productivity.

It’s getting real time data, without the need for wires, along with software that generates regulatory-compliant reports.

It’s the peace of mind you get with the new Kaye RF ValProbe.

www.gesensing.com
CLEAN & DISINFECT
FLOORS, WALLS & CEILINGS

Choose From More Than Seventeen Cleaning And Disinfecting Systems

We are the world’s leading manufacturer, supplying a wide range of multi-bucket cleaning systems engineered to capture and isolate contaminants. Our TruCLEAN systems are designed to deliver uniform application of solutions to walls, floors and ceilings. Easy operator adaptability. Reliable performance. Consistent results. GUARANTEED.

All TruCLEAN Systems compatible with Gamma, ETO and Autoclave Sterilization.

FREE PROFESSIONAL REFERENCE GUIDE
CD ROM AND VIDEO ALSO AVAILABLE

PERFEX CORPORATION
Experts in Clean Systems for Controlled Environments
800-848-8483 USA & Canada • 315-826-3600 • Fax: 315-826-7471
E-MAIL: perfex@ntcnet.com WEBSITE: www.perfexonline.com
The PDA Annual Meeting is the one meeting each year dedicated to advancing the careers of pharmaceutical and biopharmaceutical professionals by focusing program content on science and technology innovation, offering extensive formal and informal networking opportunities and providing a forum to contribute to and influence the advancement of science and regulation in the industry.

Highlights of this year’s conference program include:

- The patient point-of-view and how you and your organization may have contributed to their well-being and/or recovery
- Novel manufacturing technologies that enhance patient safety
- New contaminants implications, detection and exclusion

Complementing the conference are PDA Training and Research Institute (PDA TRI) training courses, an exhibition featuring today’s leading pharmaceutical and biopharmaceutical companies, PDA’s 4th Annual Career Fair and enhanced networking opportunities.

www.pda.org/annual2008