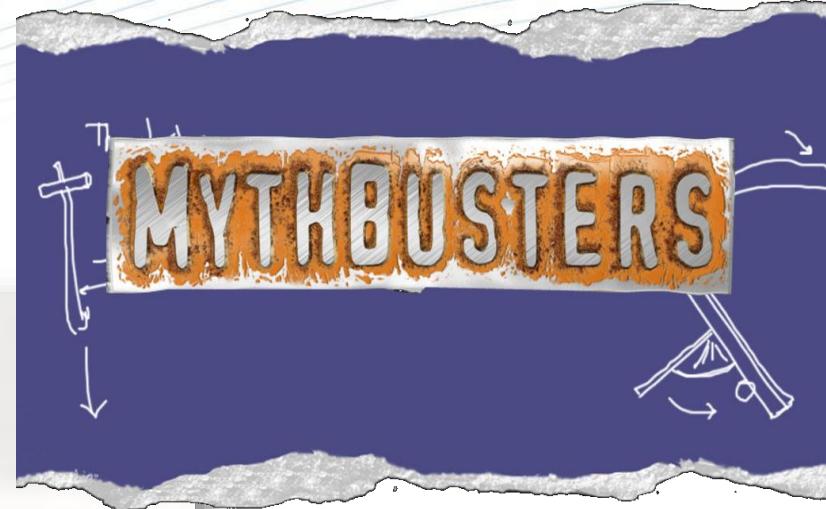


Visual Inspection of Injectable Products:

Myth Busting ...

John G. Shabushnig, Ph.D.
Insight Pharma Consulting, LLC

johnshabushnig@aol.com
January 2025

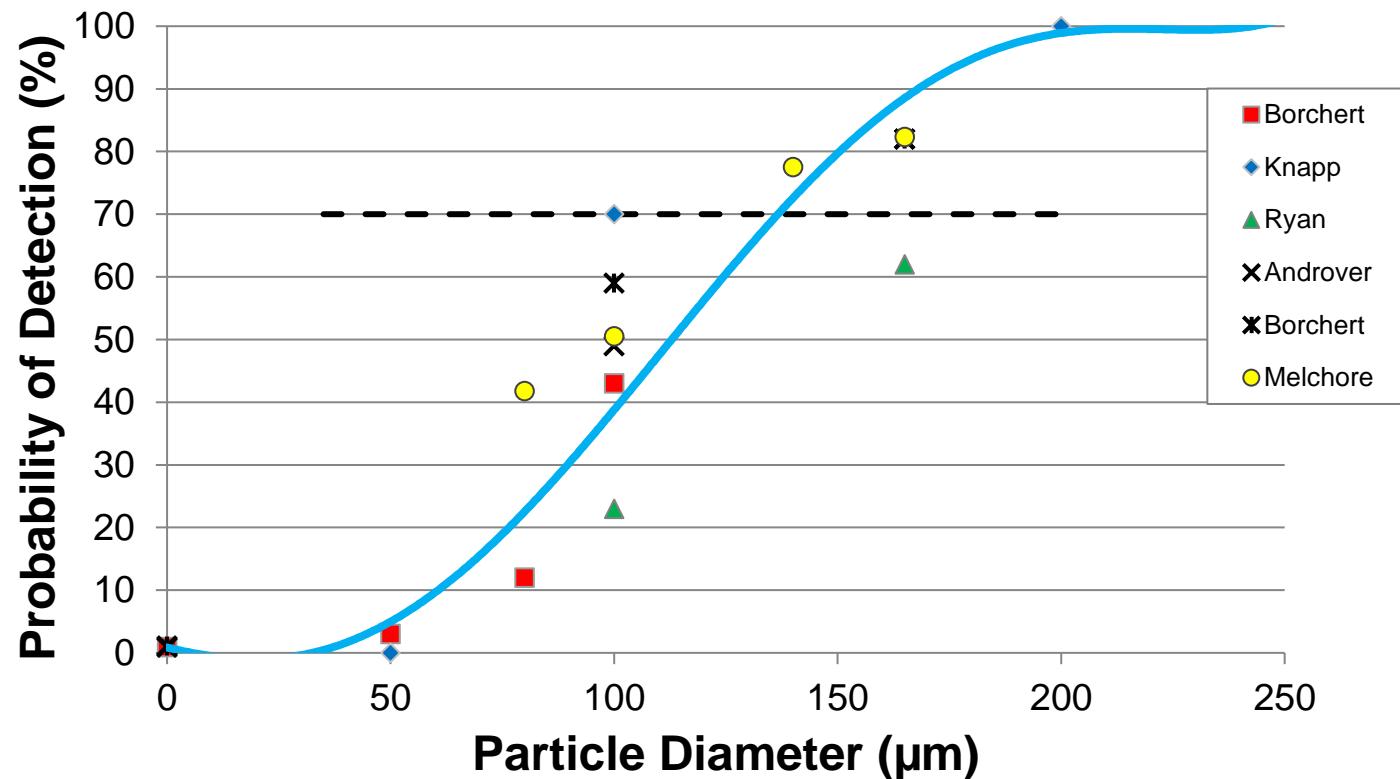

Fundamentals of Visual Inspection
© 2025 John G. Shabushnig

Agenda

- Inspection Myths
- Conclusions
- References and Acknowledgements

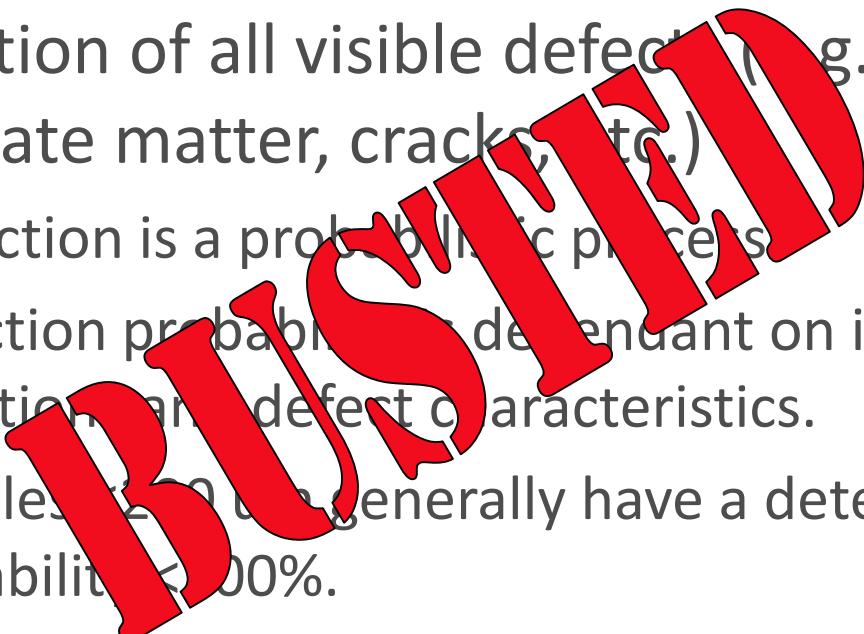
Inspection Myths

Fundamentals of Visual Inspection


© 2025 John G. Shabushnig

Inspection Myth #1

- 100% inspection means detection and elimination of all visible defects (e.g. particulate matter, cracks, etc.)
 - Inspection is a probabilistic process.
 - Detection probability is dependant on inspection conditions and defect characteristics.
 - Particles $<200\text{ }\mu\text{m}$ generally have a detection probability $<100\%$.


Human Inspection Performance

From Shabushnig, Melchore, Geiger, Chrai and Gerger, PDA Annual Meeting 1995

Inspection Myth #1

- 100% inspection means detection and elimination of all visible defects (e.g. particulate matter, cracks, etc.)
 - Inspection is a probabilistic process
 - Detection probability is dependent on inspection conditions and defect characteristics.
 - Particles $\geq 20 \mu\text{m}$ generally have a detection probability $> 100\%$.

Inspection Myth #2

- Human manual inspection is a “validatable” process.
 - Human inspectors are not “validatable”
 - Qualified human inspectors can provide reliable performance
 - Define selection and training criteria
 - Control inspection conditions
 - Lighting, background, Duration
 - SOP's

BUSTED

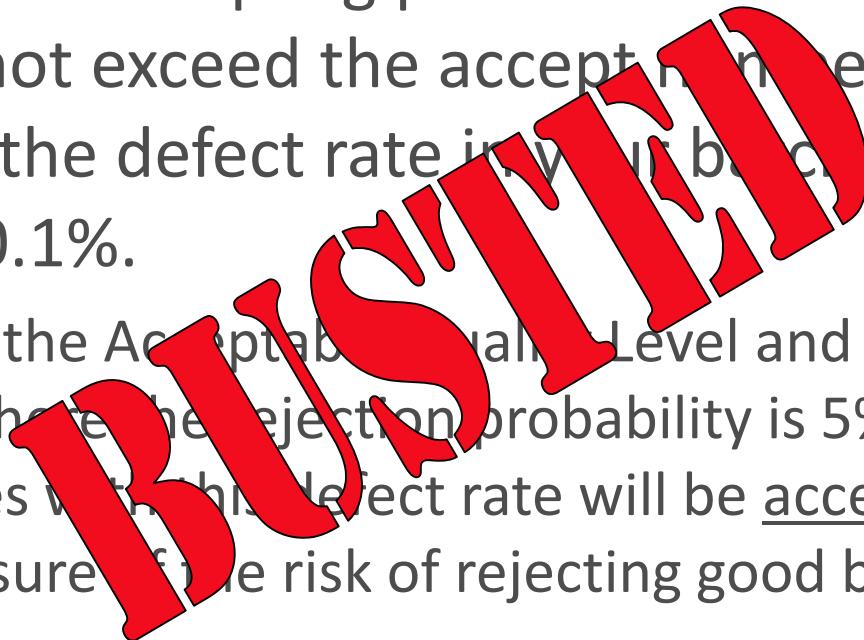
Inspection Myth #3

- Magnification always improves human manual inspection performance.
 - Inspectors will move head position to minimize eye-strain during extended inspection, reducing apparent magnification.
 - Controlled studies have not found increased detection of particulates or container defects with 3x magnification.

Detection Rate with Magnification

	5 mL		30 mL	
	No Mag	Mag	No Mag	Mag
Product	50.0%	37.5%	18.6%	18.6%
Container	37.5%	37.2%	45.4%	44.6%
Closure	62.3%	54.2%	72.5%	68.2%
All Defects	50.6%	46.0%	53.6%	51.4%
Good	0.5%	0.9%	2.0%	0.6%

Semi-automated inspection at 55 VPM, lyo test set, n=1000, 3x mag


Inspection Myth #3

- Magnification always improves human manual inspection performance.
 - Inspectors will move head position to minimize eye-strain during extended inspection, reducing apparent magnification.
 - Controlled studies have not found increased detection of particulates or container defects with 3x magnification.

BUSTED

Inspection Myth #4

- If you use a sampling plan with an AQL of 0.1% and do not exceed the acceptance number in your sample, the defect rate in your batch will not exceed 0.1%.
 - AQL is the Acceptable Quality Level and is the defect rate where the rejection probability is 5%. 95% of batches with this defect rate will be accepted. This is a measure of the risk of rejecting good batches.
 - The UQL is the Unacceptable Quality Level and is the defect rate where the rejection probability is 90% for the batch.

Conclusions

Conclusions

- Current industry performance is generally at or beyond the limits of medical risk.
- Compendial guidance is ambiguous, but getting better.
- “Zero defects” is a valuable goal, not a practical limit for particulate matter.
- Need to develop practical limits based on risk assessment and process capability measures.

References and Acknowledgements

Papers

- Good Practices in Visual Inspection
 - CG Drury, J Watson; Federal Aviation Administration, Flight Standards Service (2002), www.faa.gov
- Visual Inspection: A Review of the Literature
 - JE See; Sandia National Laboratories Report SAND2012-8590. (2012) www.sandia.gov
- Rare Items Often Missed in Visual Searches
 - J Wolfe, T Horowitz, and N Kenner; *Nature*, 435, 439-440 (2005)

Papers

- Generalized Methodology for Evaluation of Parenteral Inspection Procedures
 - JZ Knapp and HR Kushner, *J. Parent. Sci & Techn.* 34 (1), pgs. 14-61 (1980)
- Implementation and Automation of a Particle Detection System for Parenteral Products
 - JZ Knapp and HR Kushner, *J. Parent. Sci & Techn.* 34 (5), pgs. 369-393 (1980)
- 2023 PDA Visual Inspection Survey
 - J Shabushnig, R Miller, R Watson; Parenteral Drug Association, May 2023

Papers

- Intravenous Fluids: A Solution Containing Such Particles Must Not Be Used
 - JM Garvan and BW Gunner, *Med J Austr.* 2, pgs. 140-145 (1963)
- The Harmful Effects of Particles in Intravenous Fluids
 - JM Garvan and BW Gunner, *Med. J. Austr.* 2, pgs. 1-6 (1964)
- Particles in Intravenous Solutions; A Review
 - WH Thomas and YK Lee, *New Zealand Med. J.* 80, pgs. 170-178 (1974)
- Foreign Particle Embolism in Drug Addicts: Respiratory Pathophysiology
 - FG Douglas, et al, *Annals Int. Med.* 75, pgs 865-872 (1971)

Papers

- Potentially Hazardous Effects of Introducing Particulate Matter into the Vascular System of Man and Animals
 - AM Jonas, *Proceedings of the Safety of Large Volume Parenteral Solution Symposium*, Washington D.C., July 28-29, 1966
- Industry Perspective on the Medical Risk of Visible Particles in Injectable Drug Products
 - S Bukofzer, J Ayres, et al; PDA J Pharm Sci and Technol 69, 123-139 (2015)
- Applying Machine Learning to the Visual Inspection of Filled Injectable Drug Products
 - R Veillon, J Shabushnig, et al; PDA J Pharm Sci and Technol, in press (2023)

Papers

- Visible Particulates in Injections – A History and a Proposal to Revise USP General Chapter *Injections <1>*
 - RE Madsen, RT Cherris, JG Shabushnig and DG Hunt, *Pharmacopeial Forum*, 35(5) pgs. 1383-1387, Sept-Oct 2009.
- Particulate Matter in Injectable Drug Products
 - Stephen E. Langille, *PDA J Pharm Sci and Technol*, 67 (3) pgs. 186-200 (2013)
- Considerations for Design and Use of Container Challenge Sets for Qualification and Validation of Visible Particulate Inspection
 - James A. Melchore and Dan Berdovich, *PDA J Pharm Sci and Technol*, 66 (3) pgs. 273-284 (2012)

Books and Journals

- Visual Inspection and Particulate Control
 - D. Scott Aldrich, Roy T. Cherris and John G. Shabushnig, DHI Press
©2016, PDA Bookstore
- Control of Particulate Matter Contamination in Healthcare Manufacturing
 - Thomas A. Barber, CRC Press ©1999
- Pharmaceutical Particulate Matter; Analysis and Control
 - Thomas A. Barber, Interpharm Press ©1993
- Particulate Matter; Sources and Resources for Healthcare Manufacturers
 - Michael J. Groves, Interpharm Press ©1993

Books and Journals

- Liquid & Surface-Borne Particle Measurement Handbook
 - Julius Z. Knapp, et. al., Marcel Dekker ©1997
- Illuminating Engineering Society of North America (IESNA) Lighting Handbook
 - Ed. Mark S. Rea, 9th Edition, ©2000
- Guide to Acceptance Sampling
 - Wayne A. Taylor, Taylor Enterprises, Lake Villa, IL, ©1992

Journals

- PDA Journal of Pharmaceutical Science and Technology
- PDA Technical Report No. 43 (Revised 2013): Identification and Classification of Nonconformities in Molded and Tubular Glass Containers for Pharmaceutical Manufacturing: Covering Ampoules, Bottles, Cartridges, Syringes and Vials (2013)
- PDA Technical Report No. 76: Identification and Classification of Visible Nonconformities in Elastomeric Components and Aluminum Seals for Parenteral Packaging (2016)
- PDA Technical Report No. 79: Particulate Matter Control in Difficult to Inspect Parenterals (2018)

Regulatory & Compendial

- US Pharmacopoeia (USP)
 - *<1> Injections and Implanted Drug Products (Parenteral) – Product Quality Tests*
 - *<771> Ophthalmic Products – Quality Tests*
 - *<787> Subvisible Particulate Matter in Therapeutic Protein Injections*
 - *<788> Particulate Matter in Injections*
 - *<789> Particulate Matter in Ophthalmic Solutions*
 - *<790> Visible Particulates in Injections*
 - *<1787> Measurement of Subvisible Particulate Matter in Therapeutic Protein Injections*
 - *<1788> Methods for the Determination of Particulate Matter in Injections and Ophthalmic Solutions*
 - *<1790> Visual Inspection of Injections*

Regulatory & Compendial

- European Pharmacopeia / Pharm Europa (EP)
 - 2.9.19 *Particulate Contamination: Sub-Visible Particles*
 - 2.9.20 *Particulate Contamination: Visible Particles*
 - 5.17.2 *Recommendations on testing of particulate contamination: visible particles (DRAFT)*
- Japanese Pharmacopoeia (JP)
 - 6.06 *Foreign Insoluble Matter Test*
 - 6.07 *Insoluble Particulate Matter Test for Injections*

Regulatory & Compendial

- FDA Guidance for Industry: Inspection of Injectable Products for Visible Particulates (Dec 2021, draft)
- FDA Guidance for Industry: Sterile Drug Products Produced by Aseptic Processing – Current Good Manufacturing Practice (2004)
- US FDA Compliance Program Guidance Manual 7356.002A
- US FDA Advisory: Formation of Glass Lamellae in Certain Injectable Drugs (3-25-2011)

Regulatory & Compendial

- US Code of Federal Regulations (CFR) 211 Food and Drugs
 - Subpart B – Organization and Personnel
 - 211.25 Personnel qualifications
 - Subpart C – Buildings and Facilities
 - 211.42 Design and construction features
 - 211.56 Sanitation
 - Subpart D -Equipment
 - 211.63 Equipment design, size and location
 - 211.65 Equipment construction
 - 211.67 Equipment cleaning and maintenance
 - 211.68 Automatic, mechanical, and electronic equipment

Regulatory & Compendial

- US Code of Federal Regulations (CFR) 211 Food and Drugs
 - Subpart E - Control of Component and Drug Product Containers and Closures
 - 211.80– General requirements
 - 211.84 Testing and approval or rejection of components, drug product containers, and closures
 - 211.94 Drug product containers and closures
 - Subpart F – Production and Process Controls
 - 211.100 Written procedures: deviations
 - 211.110 Sampling and testing of in-process materials and drug products
 - Subpart I – Laboratory Controls
 - 211.160 Laboratory controls – general requirements
 - 211.165 Testing and release for distribution

Regulatory & Compendial

- US Code of Federal Regulations (CFR) 211 Food and Drugs
 - Subpart J – Records and Reports
 - 211.188 Batch production and control records
 - 211.192 Production record review
 - 211.194 Laboratory records
 - 211.198 Complaint files
 - Subchapter F - Biologics
 - 600.10 Personnel
 - 600.11 Physical establishment, equipment, animals, and care

Regulatory & Compendial

- EC Guide to Good Manufacturing Practice – Annex 1 Manufacture of Sterile Medicinal Products
- British Pharmacopeia (BP)
- Chinese Pharmacopeia (ChP)
- Japanese Guidance for Industry: Sterile Drug Products Produced by Aseptic Processing
- German Pharmaceutical Codex (DAC)
- WHO International Pharmacopoeia
- FDA Warning Letters and 483 Observations
 - FDA website
 - GMP Trends

Conferences and Meetings

- PDA Visual Inspection of Parenterals Interest Group
- PDA Visual Inspection Forums

Equipment Vendors

- Antares Vision
 - Brescia, Italywww.antaresvision.com
- Brevetti C.E.A., S.p.A.
 - Sovizzo, Italywww.brevetti-cea.com
- Bonfiglioli Engineering, S.r.l.
 - Vigarano Pieve, Italywww.bonfiglioliengineering.com
- Dabrico, Inc.
 - Kankakee, ILwww.dabrico.com
- eyetec
 - Antwerp, Belgiumwww.eyetec.be
- Syntegon Technology, GmbH (formerly Eisai, Bosch)
 - Waiblingen, Germanywww.syntegon.com
- InnoScan K/S (Stevenato Group)
 - Braband, Denmarkwww.innoscan.dk

Equipment Vendors

- Optrel (Stevenato Group)
 - Padova, Italy www.optrelinspection.com
- Phoenix Imaging
 - Livonia, MI www.phoeniximaging.com
- Seidenader, GmbH (Korber)
 - Munich, Germany www.seidenader.de
- Unchained Labs (Rap.ID Particle Systems)
 - Pleasanton, CA www.unchainedlabs.com
- Lighthouse Instruments
 - Charlottesville, VA www.lighthouseinstruments.com
- Wilco AG
 - Wohlen, Switzerland www.wilco.com

Standards Vendors

Standard Particles:

- Duke Scientific Corp.
 - Palo Alto, CAwww.dukescientific.com
- Mo-Sci Corp.
 - Rolla, MOwww.mo-sci.com
- National Institute of Standards (NIST)
 - Gaithersburg, MDwww.nist.gov
- Poly Sciences, Inc.
 - Warrington, PAwww.polysciences.com

Standards Vendors

Finished Standard Containers:

- Material Analytischer Service (M.A.S.)
 - Freiburg, Germany www.ma-service.de
- Micro Measurement Laboratories, Inc. (MML)
 - Wheeling, IL www.mmlabs.com
- Phoenix Imaging
 - Livonia, MI www.phoeniximaging.com
- Prime Results
 - Harrisburg, PA www.prime-results.com
- SoloHill Engineering, Inc
 - Ann Arbor, MI www.particlestandards.com

Acknowledgments

- PDA Task Force
 - Julius Z. Knapp – R&D Associates
 - Roy T. Cherris – Bridge Associates International
 - Russell E. Madsen – The Williamsburg Group, LLC
- Pfizer Inc
 - Stephen J. Borchert (retired)
 - D. Scott Aldrich (retired)
- MIBIC, GmbH
 - Markus Lankers

Questions

Remember, everyone is an inspector ...