

PDA Training Course Extractables & Leachables

23-24 October 2025

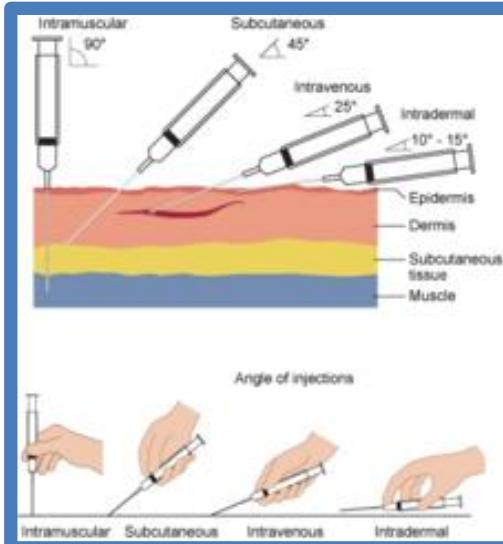
Extractable & Leachable Considerations for Small Volume Parenteral Applications

Dr. Sona Kovackova

CONNECTING
PEOPLE
SCIENCE AND
REGULATION®

Content

1. **Regulatory Expectations** for SVP – Brief Recap
2. **Rubbers** – an Introduction
3. **Rubber *Oligomers*** – Toxicity & Reactivity
4. **Glass** & Glass related Issues
5. **Other Materials** used in Small Volume Parenteral C/C Manufacturing
6. Main SVP containers: **E/L considerations**
 - Vials – Lyo vials
 - Prefilled syringes
 - Cartridges


1. Regulatory Expectations for Small Volume Parenterals – Brief Recap

1. Regulatory Expectations - US

Ranking the Packaging Concerns

100% Absorption/Bioavailability in Human Body Distribution via Systemic Circulation.

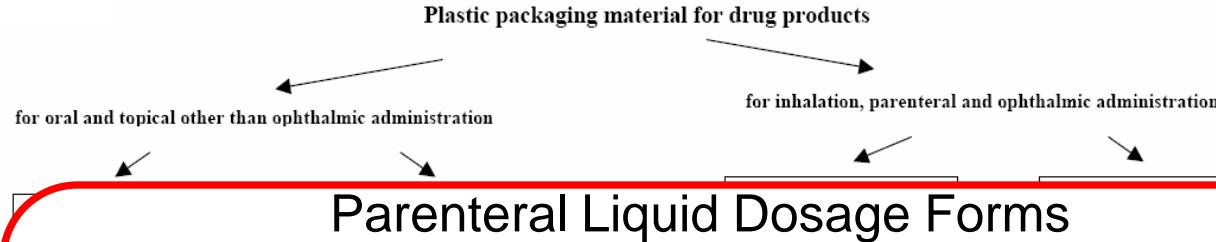
LIQUID SVP's

Examples of **PACKAGING CONCERNs** for Common Classes of Drug Products

Degree of Concern Associated with the Route of Administration	Likelihood of Packaging Components – Dosage Form Interactions		
	High	Medium	Low
Highest	Inhalation Aerosols and Sprays	Injections and Injectable Suspensions; Inhalation Solutions	Sterile Powders and Powders for Injection; Inhalation Powders
High	Transdermal Ointments and Patches	Ophthalmic Solutions and Suspensions; Nasal Aerosols and Sprays	-
Low	Topical Solutions and Suspensions, Topical and Lingual Aerosols, Oral Suspensions and Solutions	-	Oral Tablets and Oral (Hard and Soft Gelatin) Capsules; Topical Powders; Oral Powders

Originally Included into the FDA (Draft) Guidance for Industry (1999): "Container/Closure systems for Packaging Human Drugs and Biologics"

1. Regulatory Expectations - US


Remark:

		Examples of Packaging Concerns for Common Classes of Drug Products		
		High	Medium	Low
Degree of Concern Associated with the Route of Administration	Highest	Inhalation Aerosols and Sprays	Injections and Injectable Suspensions; Inhalation Solutions	Sterile Powders and Powders for Injection; Inhalation Powders
	High	Transdermal Ointments and Patches	Ophthalmic Solutions and Suspensions; Nasal Aerosols and Sprays	-
	Low	Topical Solutions and Suspensions; Topical and Lingual Aerosols; Oral Suspensions and Solutions	-	Oral Tablets and Oral (Hard and Soft Gelatin) Capsules; Topical Powders; Oral Powders

1. the “Medium” Likelihood of Packaging - DP Interaction for **Liquid SVP’s** is mainly based upon the **observation that most Parenteral DP are Aqueous Based**. For **Non-aqueous** based drug products: more **caution** is needed!
2. The “Low” Likelihood of Packaging - DP Interaction for **LYO SVP’s** is mainly based upon the **observation that:**
 1. the interaction between a solid (Lyo cake) a material (eg rubber) is limited
 2. AND, there is limited direct contact between Lyo cake and Rubber closure
 - However the Mechanism of interaction for a LYO Cake and its MoC may not need always a direct contact.
 - **BE CAREFUL** when “rationalizing” a LYO application as being Non Critical!!!

1. Regulatory – EU – Plastic Immediate Packaging Materials (2005)

- Going through the decision tree: **liquid dosage forms – high requirements**

E.P. COMPENDIAL TESTING IS REQUIRED BUT **NOT SUFFICIENT**.

ADDITIONAL REQUIREMENTS

EUROPEAN PHARMACOPOEIA TESTS

EXTRACTION STUDIES

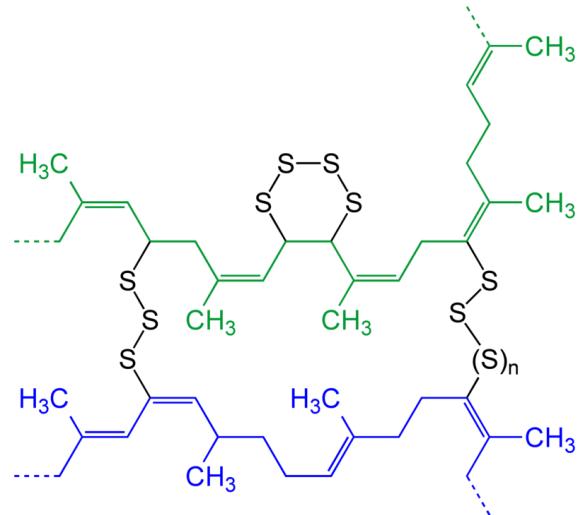
INTERACTION STUDIES (INCLUDING §5.1 MIGRATION STUDIES)

•General information (3.1) •Specification (3.2)	(3.1) •Specification (3.2) •Interaction studies	(3.1) •Specification (3.2) •Extraction studies (4) •Interaction studies (5) •Toxicological information (6)	(3.1) •Specification (3.2) •Interaction studies if necessary (5)	(3.1) •Specification (3.2) •Interaction studies	(3.1) •Specification (3.2) •Extraction studies (4) •Interaction studies (5) •Toxicological information (6)
--	---	--	--	---	--

CPMP/QWP/4359/03 and EMEA/CVMP/XXX/03

©EMEA 2005

2. Rubbers – An introduction


Supported by Datwyler

2. Rubbers – an Introduction

What is rubber?

An **elastic** material

A **compounded** material

- *Basis of a rubber → polymer → elastomer*
- *Elasticity via crosslinking (curing, vulcanising) the elastomer*
- *Additional ingredients to “tune“ the rubber*

2. Rubbers – an Introduction

Rubber = Compounded Material of:

1. Elastomer

2. Filler

3. Cure system

4. Pigment

5. Other ingredients

2. Rubbers – an Introduction

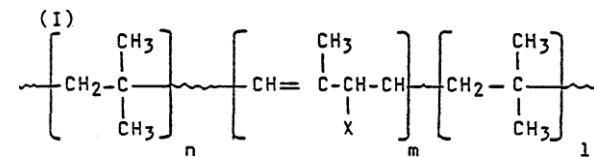
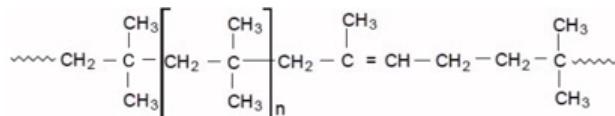
Rubber = Compounded material of:

1. Elastomer

2. Filler

3. Cure system

4. Pigment



5. Other ingredients

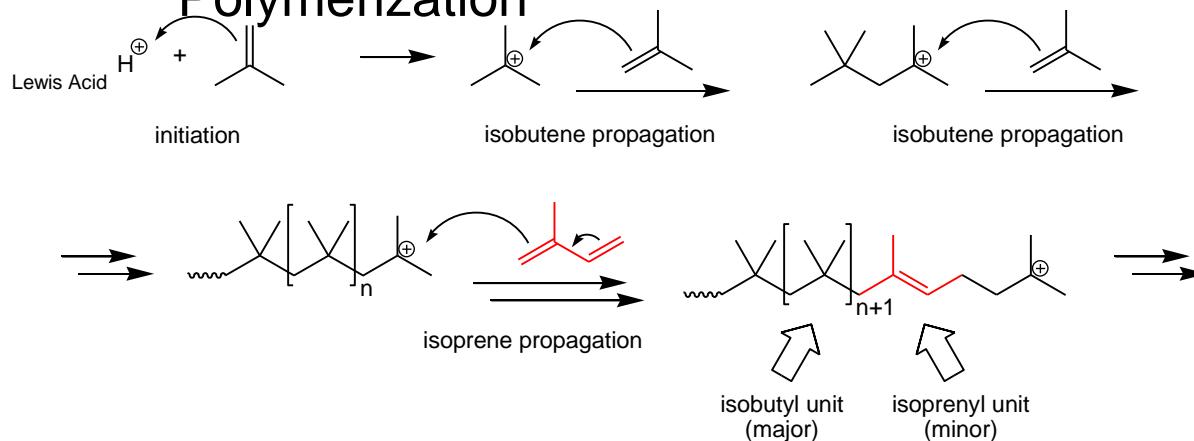
2. Rubbers – an Introduction

Elastomer

- **Halobutyl (BromoButyl, ChloroButyl)**

- *Bromobutyl and Chlorobutyl Elastomers **predominantly used** in SVP rubber components*
- **Cleanest curing** system
- **Lowest permeability**
- **High resistance to ageing**

X = Cl or Br

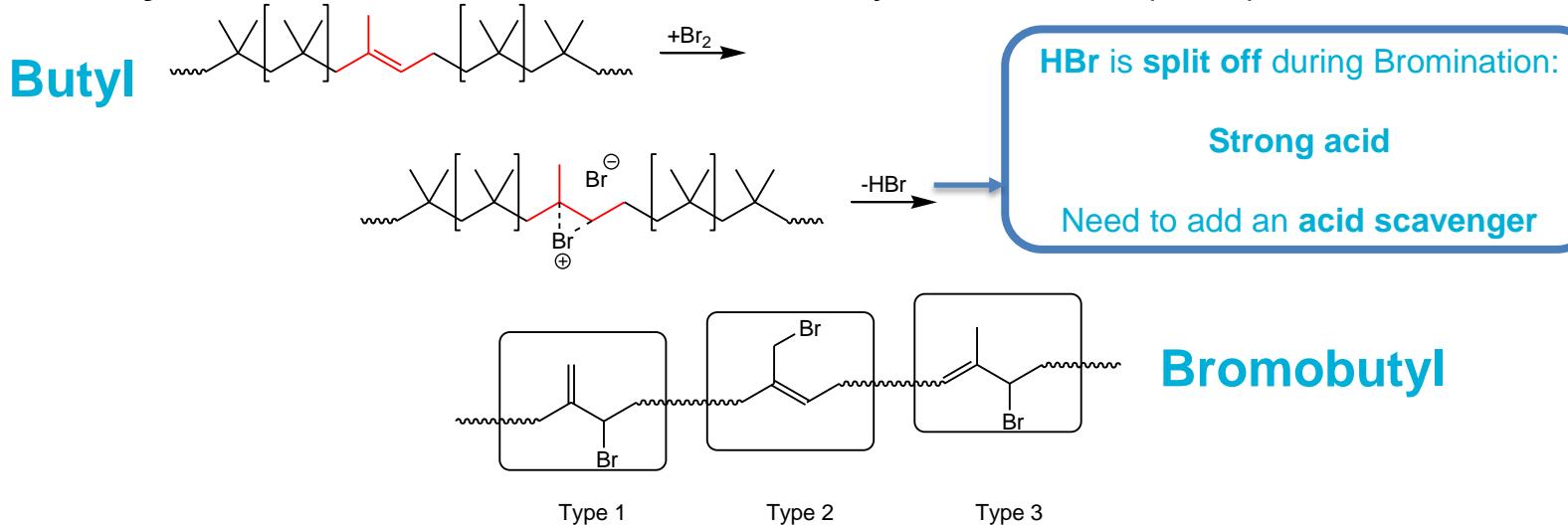

Butyl

Halobutyl

2. Rubbers – an Introduction

Elastomer

Butyl Elastomer (IIR): Cationic Polymerization

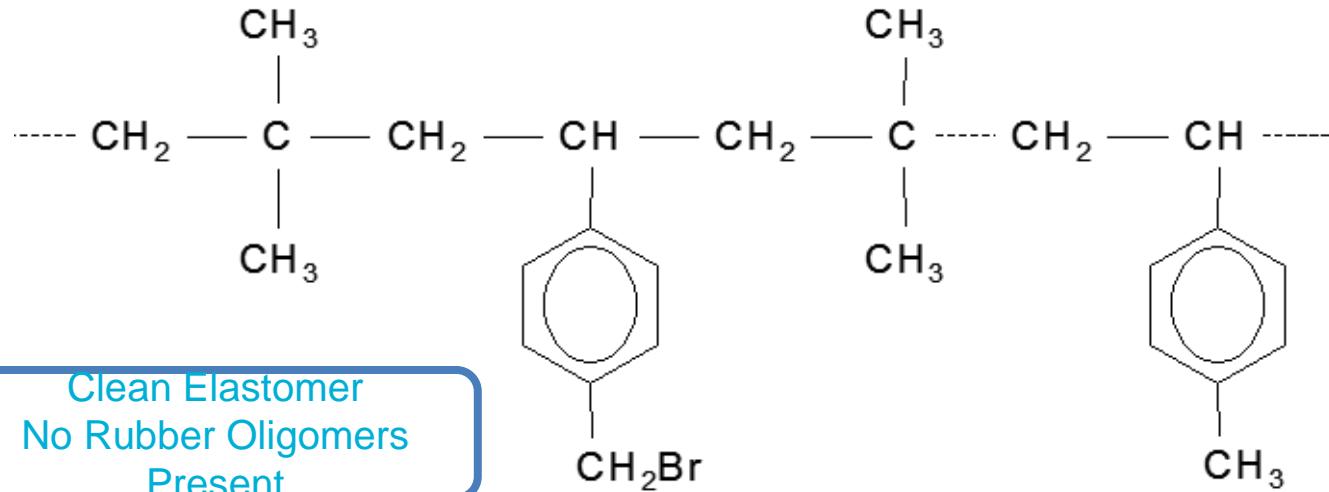

➤ Note: the Polymerization Starts with a Isobutene Unit (present in high excess!!)

- 98 – 99 mol% is isobutylene
- 1 – 2 mol% is isoprene

2. Rubbers – an Introduction

Elastomer

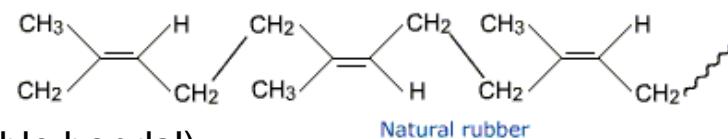
Bromobutyl Rubber: Bromination of the Butyl Elastomer (BIIr)

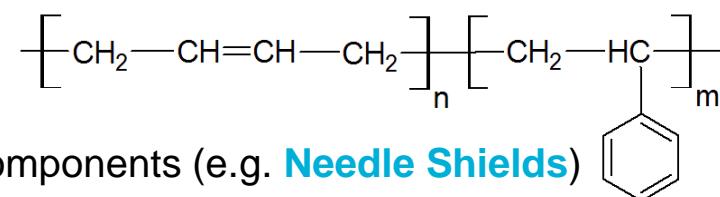

Bromination of the Backbone makes Elastomer more reactive in vulcanization/cross linking

(BIIr has a relatively Low N° of double bonds in backbone)

2. Rubbers – an Introduction

Elastomer


Regular **butyl** still on the market, and also newer types like **BIMS**
(*Brominated isobutylene para-methylstyrene*)


2. Rubbers – an Introduction

Elastomer

- **Natural rubber / Polyisoprene**
 - Natural rubber: latex **allergy** discussions
 - **Historically** the **oldest** elastomer type
 - Need **complex curing** systems
 - **Good elastic** properties
 - More **affected by ageing/oxidation** (N°)
 - Polyisoprene (**Synthetic**) replaces **Natu**

- **SBR** (styrene-butadiene rubber)
 - Random Copolymer
 - Intermediate **permeability**
 - Typically used for pre-assemble

2. Rubbers – an Introduction

Rubber = Compounded material of:

1. Elastomer

2. Filler

3. Cure system

4. Pigment

5. Other ingredients

2. Rubbers – an Introduction

Filler

- Fillers give **mechanical strength (stiffness)** to a rubber
- Attributes **physical properties** to a rubber compound
 - **More filler = Harder compound**
 - Better for **gliding** profile plungers
 - **Worse for stopper piercing** (coring!)
- Inorganic fillers ('white compounds')
 - Aluminum silicate (clay)
 - Magnesium silicate (talc)
 - Silicate
 - [Calcium carbonate]
- Carbon black ('black compounds')
 - Undesired for cleanliness reasons
 - May be associated with PNA's

2. Rubbers – an Introduction

Rubber = Compounded material of:

1. Elastomer

2. Filler

3. Cure system

4. Pigment

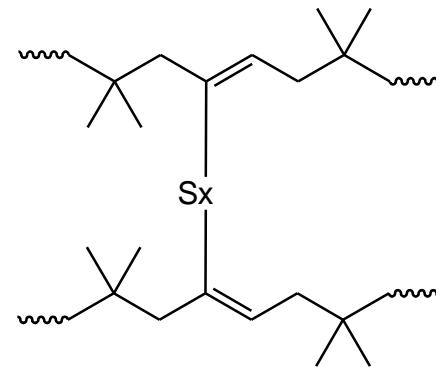
5. Other ingredients

2. Rubbers – an Introduction

Curing System

- **Cure system:**
 - **Introducing Elasticity:** from elastomer to rubber
 - **Crosslinking** agent
 - **Activator:** gives the onset of vulcanization
 - **Accelerator:** speeds up the vulcanization
 - Easily extractable organic molecules such as thiurams, sulfonamides, thiazoles, ...
- **Modern cure systems**
 - Aim at giving **little extractables**
- **Historic cure systems**
 - Use **easily extractable organic accelerators**

THERMOSETTING

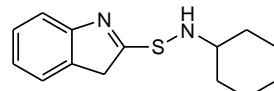

Crosslinked polymer chains

2. Rubbers – an Introduction

Curing System

Rubber Curing / Vulcanization:

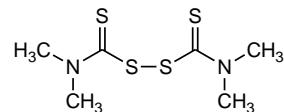
Oldest Curing
Sulfur (S_8) Vulcanization

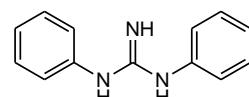


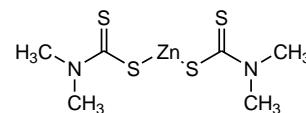
Rubber crosslinking requires S-Donors, activators, accelerators
Activator: ZnO / Stearic acid

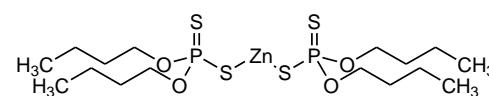

2. Rubbers – an Introduction

Curing System


Rubber Curing – **Accelerators** used in **Older** Curing Systems:

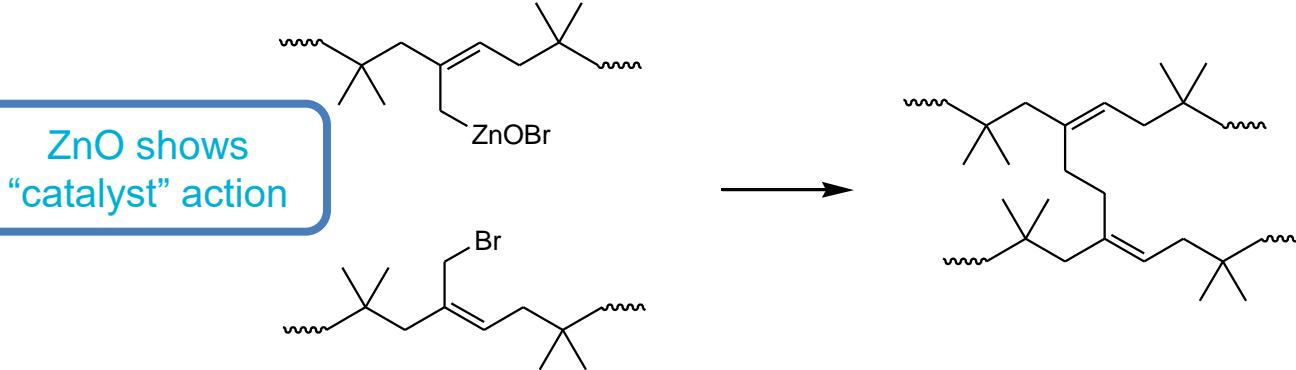

Cyclohexyl benzothiazole sulfenamide


Mercaptobenzothiazole disulfide


Tetramethylthiuram disulfide (TMTD)

Diphenyl guanidine

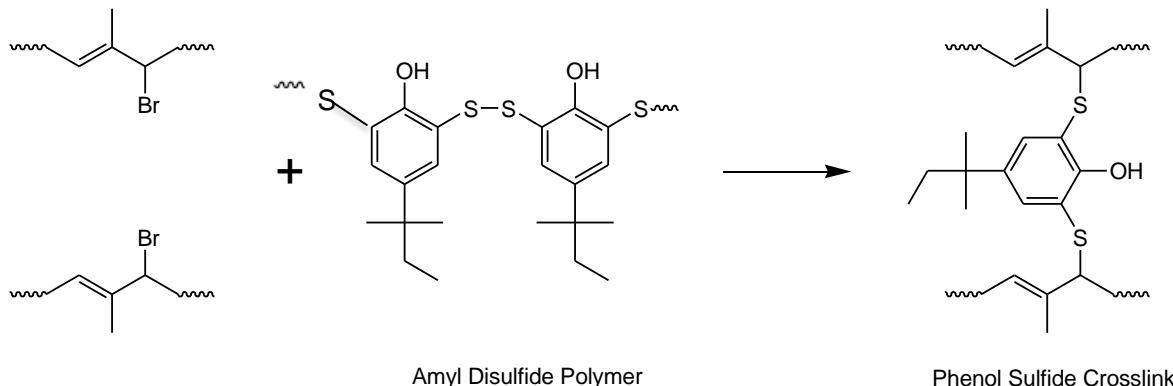
Zinc dimethyldithiocarbamate


Zinc dibutylphosphorodithioate

accelerators: known
to lead to
n-Nitrosamine

2. Rubbers – an Introduction

Curing System


ZnO as Activator Compound in Halobutyl-Rubbers:

2. Rubbers – an Introduction

Curing System

Vultac Vulcanizing Agent for (Halobutyl) Elastomers

Bromide: good leaving group!

Bond Energy C-H 413 J/mol \leftrightarrow C-Br 209 J/mol

Explains Br⁻ release from bromobutyl rubbers

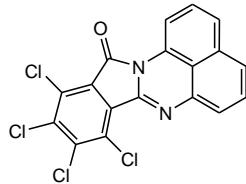
2. Rubbers – an Introduction

Rubber = Compounded material of:

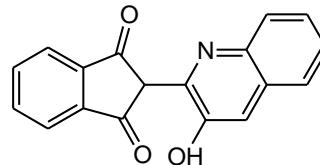
1. Elastomer

2. Filler

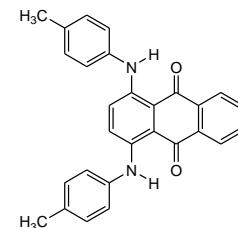
3. Cure system


4. Pigment

5. Other ingredients


2. Rubbers – an Introduction

Pigments


- **Inorganic pigments**
 - Titanium dioxide
 - Traces of carbon black
 - Oxides of iron
- **Organic pigments**
 - Avoided in modern compounds

Solvent Red

Solvent yellow 114

Solvent Green 03

Cosmetic reasons – or-
Differentiate different
Strengths & Presentations

2. Rubbers – an Introduction

Rubber = Compounded material of:

1. Elastomer

2. Filler

3. Cure system

4. Pigment

5. Other ingredients

2. Rubbers – an Introduction

Other Ingredients

- **Halobutyl polymer stabilizers**

(neutralize HBr/HCl after halogenation & to prevent dehydrohalogenation during processing)

- Calcium stearate
- Epoxydized soybean oil

- **Anti-oxidants**

- Already present in halobutyl elastomer
- Hindered phenol type anti-oxidants
- Additionally added to improve environmental stability (ageing)

- **Plasticizer, Waxes, Oil**

(introduce softness, anti-“coring”)

- High polymeric weight plasticizers, Paraffinic oil
- To tune a formulation (e.g. reduce coring)

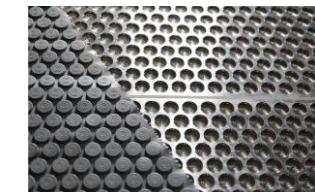
- **Processing aids**

2. Rubbers – an Introduction

THE COMPOSITION OF RUBBERS
CAN BE VERY COMPLEX!!

RUBBER EXTRACTABLES: SUM OF

- 1. Initial Ingredients of the Rubber Formulation
- 2. Impurities of these Ingredients
(e.g. Residual Solvents, *Oligomers in Elastomer*, Halides in Halobutyl Rubber...)
- 3. Reaction/Degradation Products During the rubber Production (Milling, Calendering, Molding)

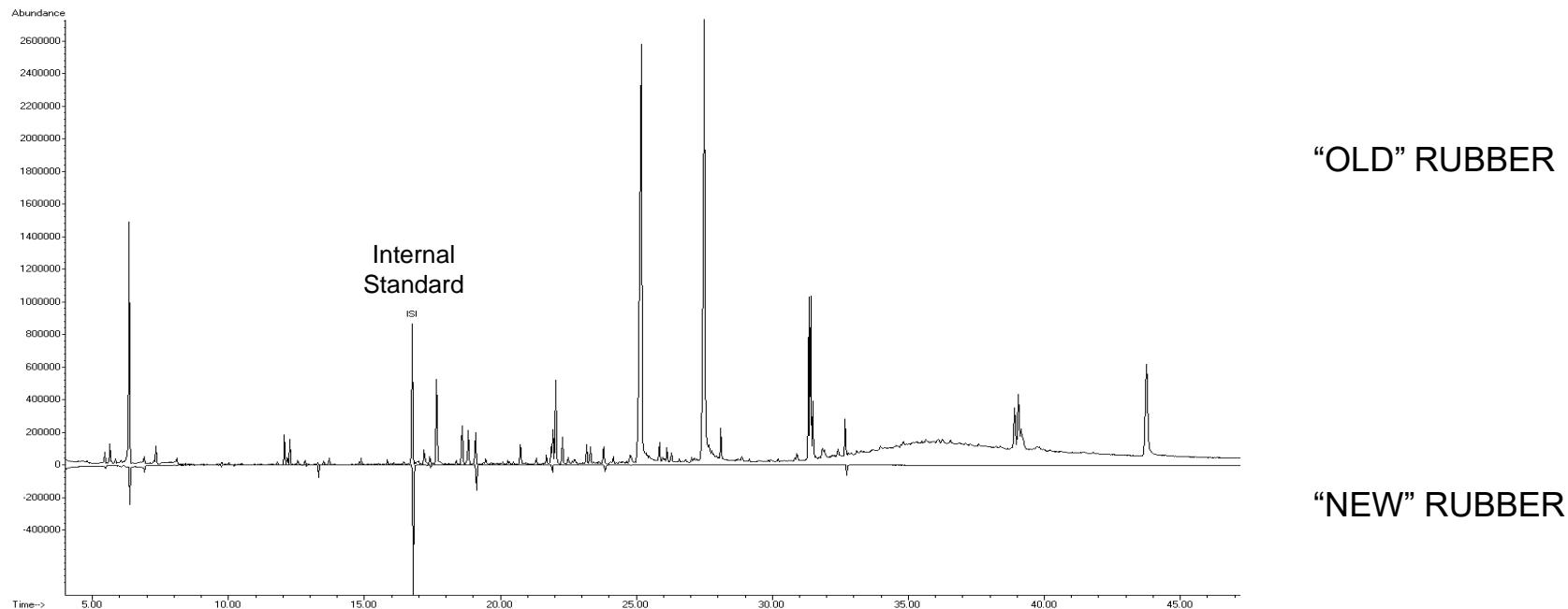

Mixing of Blend

Milling

Calendar

Molding (Curing)

Molded Rubber stoppers

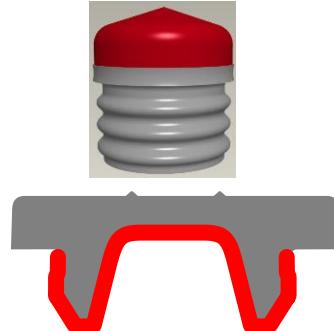

2. Rubbers – an Introduction

In general too many ingredients should be avoided: negative impact on E-profile

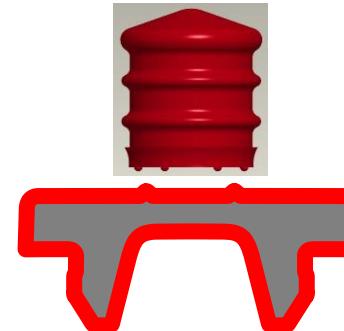
→ ***“what you don’t put in, can’t come out”***

2. Rubbers – an Introduction

Difference in Extractable Results for an **OLD** vs **NEW** rubber
(IPA Extract; GC/MS analysis)

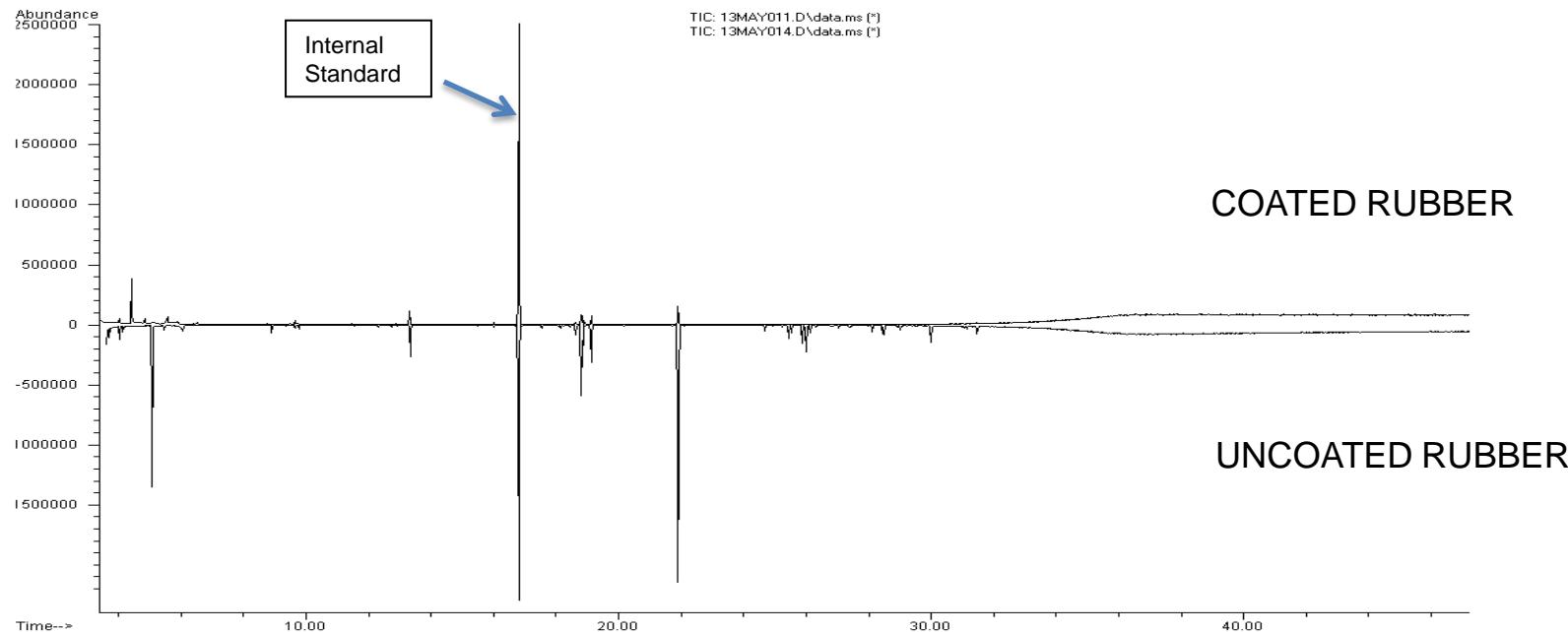


2. Rubbers – an Introduction


COATED RUBBERS

- Coated closures: significant improvement in E&L terms
- Key attribute: barrier effect from the fluoropolymer!
 - *Simplified extractables profile*
 - *Improved Drug Compatibility*

Film coating technology

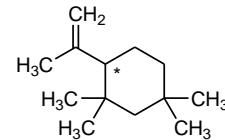


Spray coating technology

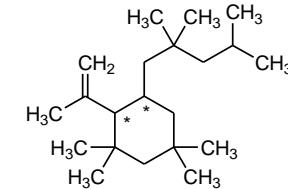
2. Rubbers – an Introduction

Difference in Extractable Results for a **Coated vs Uncoated rubber**,
for the same rubber grade (*IPA Extract; GC/MS analysis*)

2. Rubbers – an Introduction


Number of Leachables from rubbers in SVPs is determined by:

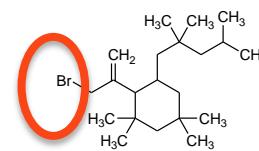
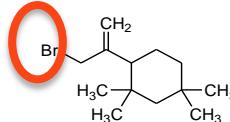
- The Type of **Rubber Formulation**
- The **Number of Ingredients** in the Rubber
- **Type** of Ingredients (type of vulcanisation, type of AO, stabilizer....)
- **Coated/Non-coated** rubbers
- The **Composition of the Medicinal Product** (MP)
- The **Type of Contact** between the rubber and the MP (e.g. *exposed surface area*)
- The **Storage Temperature**
- The **Storage Time** (Expiration Date)


3. Rubber Oligomers: Toxicity & Reactivity

3. Rubber Oligomers: Toxicity & Reactivity

$C_{13}H_{24}$ and $C_{21}H_{40}$ Oligomers

C13 oligomer



C21 oligomer

- Formed both **during the Polymerization** and the **rubber curing** at high temperatures
- Considered as
 - **Cyclic aliphatic hydrocarbon** compounds
 - **One double bond**
- **No experimental data / Literature** data is known about **toxicity of these compounds**
- **Structure Activity Relationship Assessment (SAR):** compound of **low toxicity risk.**

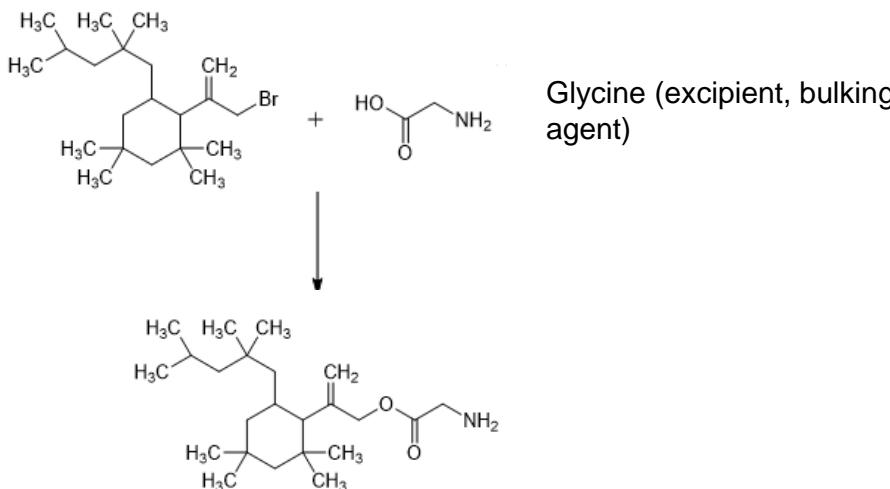
3. Rubber Oligomers: Toxicity & Reactivity

Halogenated Rubber Oligomers – Compounds of high concern

$C_{13}H_{23}Br$ / $C_{13}H_{23}Cl$ and $C_{21}H_{39}Br$ / $C_{21}H_{39}Cl$ Oligomers

- Considered as
 - **HALOGENATED** Cyclic Aliphatic Hydrocarbon compounds (**Allyl Halide**)
 - **Alkylating Agents**
 - One double bond
- Structure Activity Relationship (SAR) Assessment:

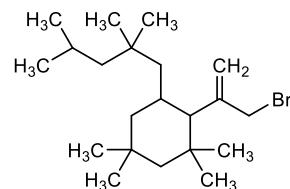
CARCINOGENICITY IN HUMANS IS PLAUSIBLE

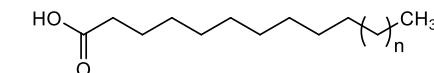

- As no experimental data / Literature data is known about the toxicity of these compounds, a lot of Pharma companies:
 - » Rely on the result of a SAR assessment to perform a tox evaluation
 - » Conclude that these compounds are of High Concern

3. Rubber Oligomers: Toxicity & Reactivity

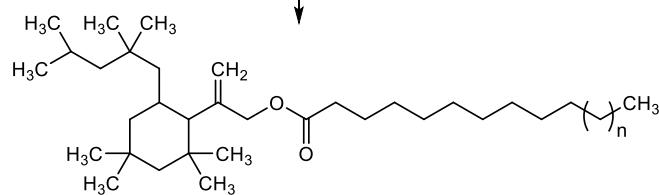
Lyophilized Drug Product B in a glass vial with a rubber stopper (without coating):

Excipients a.o.: Glycine

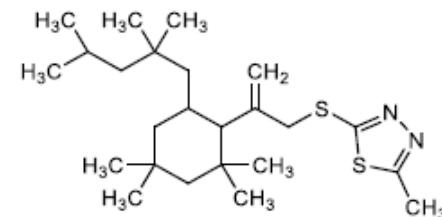
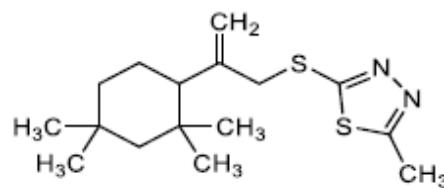

C21H39Br rubber oligomer source -
leachable from a rubber stopper


3. Rubber Oligomers: Toxicity & Reactivity

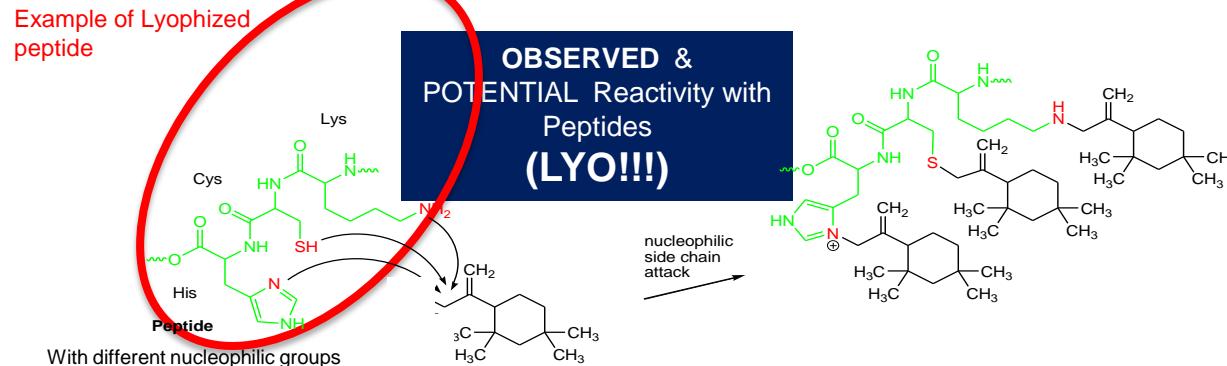
Lyophilized Drug Product A in a glass vial with a rubber stopper (without coating):
Excipients a.o.: Polysorbate 20


C₂₁H₃₉Br rubber oligomer source
 - leachable from a rubber stopper

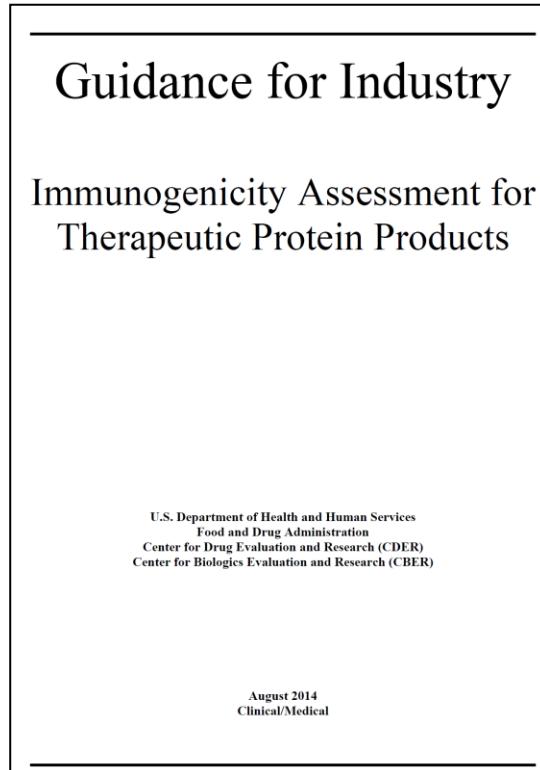
+

Fatty acids source –
 Polysorbate 20


3. Rubber Oligomers: Toxicity & Reactivity

Adduct Formation of an Small Molecule API with
the C₁₃H₂₃Br and C₂₁H₃₉Br oligomers


3. Rubber Oligomers: Toxicity & Reactivity

Observed Reactivity of $C_{13}H_{23}Br$ and $C_{21}H_{39}Br$ (as alkylating agents) with peptides, proteins, and nucleic acids

Fictitious Example of a Peptide with different nucleophilic functional groups

3. Rubber Oligomers: Toxicity & Reactivity

Interactions between therapeutic protein products and the container closure may negatively affect product quality and immunogenicity. These interactions are more likely with prefilled syringes of therapeutic protein products. These syringes are composed of multiple surfaces and materials that interact with the therapeutic protein product over a prolonged time period and thus have the potential to alter product quality and immunogenicity. The following are other container closure considerations pertinent to immunogenicity:

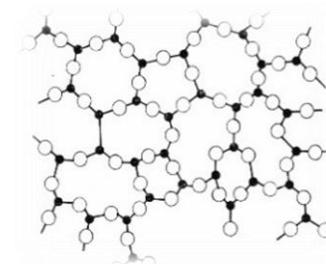
“... Interactions are more likely with prefilled syringes of therapeutic protein products...”

“... Materials that interact with the therapeutic protein product over a prolonged time and thus have the potential to alter product quality and immunogenicity...”

FDA Guidance for Industry,
2014

4. Glass & Glass Related Issues

Vials, Prefilled Syringes, Cartridges


4. Glass & Glass Related Issues

What is Glass?

An **inorganic fused substance** that has been **cooled to a rigid condition without crystallization** (e.g. Supercooled amorphous substance)

Why Glass as Packaging Material?

- **Well-known** material
- **Transparent**
- **Heat resistant**
- Good **barrier** properties: gas & vapour tight
- Chemically and physically (quite) **inert**.

J. Zuercher, ECA Course E/L, Prague 2010

4. Glass & Glass Related Issues

Composition of Glass – Function of Ingredients

- SiO_2 : Backbone structure
- CaO : Increasing hardness & Chemical resistance
- Al_2O_3 : Increasing Chemical Resistance
- Na_2O & B_2O_3 : Lowering the melting point
- Fe_2O_3 , TiO_2 : Amber Glass
- CuO : Blue Glass
- Mn^{3+} : Violet Glass

J. Zuercher, ECA Course E/L, Prague 2010

4. Glass & Glass Related Issues

Glass Composition for different Glass Types:

Component	Type I (Borosilicate)	Type II, III, NP (Soda-Lime)
SiO ₂	70 - 73%	69 - 73%
B ₂ O ₃	10%	0 - 1%
Na ₂ O	2 - 9%	13 - 14%
Al ₂ O ₃	6 - 7%	2 - 4%
BaO	0,1 - 2,0%	0 - 2%
K ₂ O	1 - 2%	0 - 3%
CaO	0,7 - 1,0%	5 - 7%
MgO	0 - 0,5%	3 - 4%
ZnO	0 - 0,5%	-

“Soda – Lime”

4. Glass & Glass Related Issues

Examples for Extractables / Leachables

- **High heating** during molding process leads to an **increasing release of alkali ions** from the glass surface => **Delamination**
- **Heating promotes migration of alkali oxides** within the silica matrix to the glass surface
- During the process, **components of the heated glass vaporize and deposit** on the surface
- Relevant for **glass containers** made from **tubular glass (vials)**
- **Small volume** containers are **more impacted** than larger containers

4. Glass & Glass Related Issues

Parameters, impacting the Glass Leachables

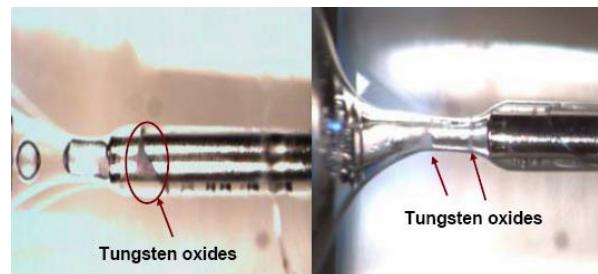
- **Filling Volume:** *smaller filling volumes show higher leachable concentrations*
- **Storage time:** *leachable concentrations increase over time*
- **Sterilization / Sterilization time:** *longer autoclaving cycles, higher concentrations*
- **Sterilization Temperature:** *higher temperatures, higher concentrations*
- **Type of contact solution:**
[Si]: Lactic acid < acetic acid < ascorbic acid < malic acid < tartaric acid < oxalic acid < citric acid
Complexing agents, such as EDTA may also impact the metal release from Glass
- **Impact of pH:** *higher pH, higher [Si] release.*
In general, more metals are leaching out of glass at pH>9

J. Zuercher, ECA Course E/L, Prague 2010

4. Glass & Glass Related Issues

Risk of Glass Leachables

- **Most observed Metal Leachables from Glass:**
Si and **Na** as MAJOR leachables, **K, B, Ca & Al** as MINOR LEA, **Fe**: traces
- **Alkali release:** pH shift of unbuffered solutions
- **Silicon (Si) release:** increased particle load, delamination!
- **Aluminum release:**
Aluminum can accumulate in patients with reduced renal function, causing e.g. neurological diseases
- Potential **Arsenic (As) release:**
*glass can contain arsenic oxide (III) as a **fining agent to improve glass transparency**. Arsenic is toxic!*
- **Release of metals**, causing precipitation with some salts, present in the DP
 $Ba \Rightarrow BaSO_4$, $Al \Rightarrow Al(OH)_3$


4. Glass & Glass Related Issues

Glass as Barrel Material

TUNGSTEN RESIDUES – PREFILLED SYRINGES

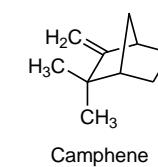
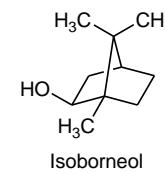
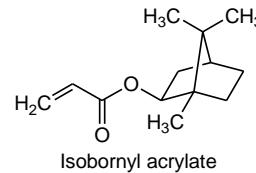
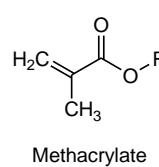
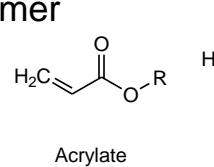
- Tungsten pin used in the production of glass pre-filled syringes to **open the syringe hub** (cavity where staked needle is glued in)
- Tungsten Oxide Residues are known to cause protein degradation (protein oxidation causing aggregation)

4. Glass & Glass Related Issues

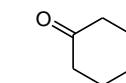
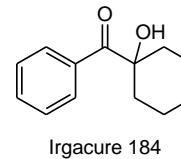
Glass as Barrel Material

GLUE RESIDUES – PREFILLED SYRINGES

- *Glue is used to glue in the staked needle into the PFS-system*
- *Prolonged contact with a drug product may release glue components*
- *Target compounds may depend upon the glue used (through UV Curing)*

4. Glass & Glass Related Issues



Glass as Barrel Material – Related Compounds

GLUE RESIDUES

Base Polymer

UV curing / activation

4. Glass & Glass Related Issues

Glass as Barrel Material – Related Compounds

SILICONE OIL RESIDUES (strictly speaking: No Leachable)

- *Silicone oil residues may **denature proteins** of form **aggregates***
- *Glass surfaces are siliconized a.o. to reduce potential interactions with aqueous contact solutions*
- *Hydrophobic surface / reduced wettability*
- Reduced alkali release
- *Silicone oil remainders become leachables*

Less of an issue with
Baked Silicone

6. Main SVP containers: Extractable Considerations

6. Main SVP containers: Extractable Considerations

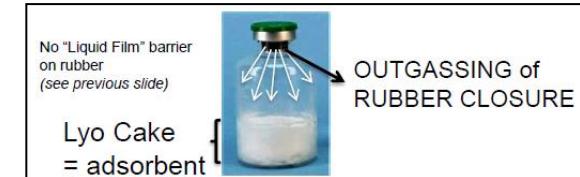
1. Vials:

6. Main SVP containers: Extractable Considerations

Vials

Liquid Drug Products

Reconstitution Solution



- If it is a **GLASS VIAL with RUBBER CLOSURE**: Sources of Impurities, coming from packaging:
 - **Glass**: Metals (*may not be necessary to be studied in EXT Study, if glass composition is available, direct assessment in LEA study*)
 - **Rubber Closure**:
 - ✓ Typically, higher migration when solution is in contact (inverted)
 - ✓ Migration will be determined by:
 - Solubility of leachables in **Drug Product** Solution
 - Potential Diffusion of Compounds through rubber, into solution
 - Temperature
 - ✓ VOC, SVOC and NVOC & some metals may cause a **Safety Issue**
 - ✓ VOC, SVOC, NVOC, Silicone Oil and some Metals may also be **Reactive** e.g. with **reconstituted DP**: also potential Performance & **Quality Issue!**
 - ✓ Also, Ions may need to be “checked off”...

6. Main SVP containers: Extractable Considerations

Lyo-Cake Vials

- Sources of impurities, coming from packaging
 - **Glass:** Metals (may not be necessary to be studied in EXT Study, if glass composition is available, direct assessment in LEA study)
 - **Rubber Closure:**
 - ✓ **No Direct Contact** between DP and Closure (upright)
 - ✓ **HOWEVER:** Release of Volatile (VOC) and Semi-Volatile (SVOC) Compounds from the Rubber Closure vial desorption and subsequent adsorption of compounds onto Lyo-Cake!
 - ✓ **Lyo-cake acts as adsorbent for VOC and SVOC compounds! Released Compounds are concentrated over time onto the Lyo Cake**
 - ✓ **Regardless** if vial is in **upright or inverted** position (contact / no contact with DP)
 - ✓ VOC and SVOC may also be **Reactive** with DP: also potential Performance & Quality Issue!
 - ✓ Also NVOC, Metals and Ions need to be “checked off”, because of short term contact with Reconstituted DP.

The Interaction Mechanism: During Long Term STORAGE of the LYO-Cake

RUBBER

OUTGASSING OF
RUBBER STOPPER

LYO CAKE

Outgassing of rubbers is mainly an issue for:

- Volatile Organic Compounds
- Semi-Volatile Organic Compounds

LYO CAKE: EXTREMELY GOOD ADSORBENT

- High Surface Area
- Extremely Dry

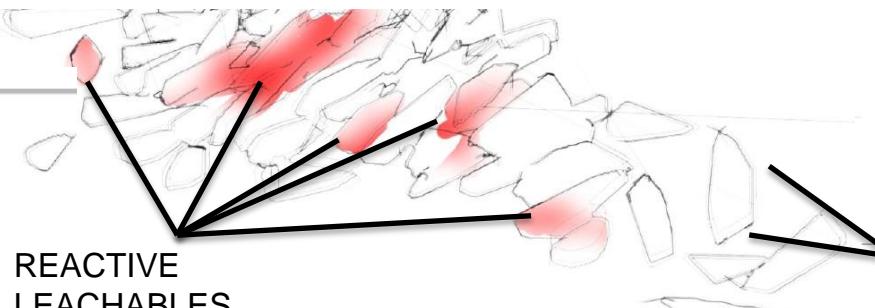
Rubber Stopper

OUTGASSING OF RUBBER STOPPER

The “Extent” of outgassing will also depend upon the Rubber Quality / Grade

Outgassing of rubbers is mainly an issue for:

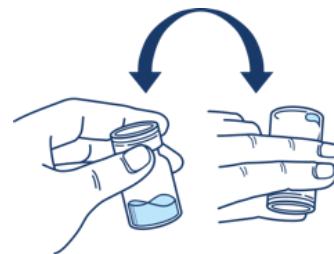
- *Volatile Organic Compounds*
- *Semi-Volatile Organic Compounds*


LYO CAKE: EXTREMELY GOOD ADSORBENT

- *High Surface Area*
- *Extremely Dry*

ACCUMULATION OF VOC/SVOC LEACHABLES

- *Over Shelf Life of the DP*
- *Potential Interactions (Reactive Leachables)*


LYO CAKE

ADSORPTION ON LYO-CAKE SURFACE pda.org

The Interaction Mechanism: During RECONSTITUTION of the Lyophilized DP

RECONSTITUTION

SOLUBILIZATION
of adsorbed leachables in reconstitution
solution

Mainly Volatile & Semi-Volatile Organic
compounds (OUTGASSING)

Reconstituted (Liquid) DP
Liquid Interaction with
Primary Packaging Components

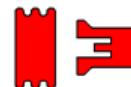
Although **SHORT TERM** Contact, also
Non-Volatile Compounds, Metals and Ions
may be released

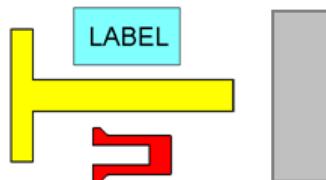
More information on E/L for Lyo-products can be found on the
Sotera Health Academy



6. Main SVP containers: Extractable Considerations

2. Pre-Filled Syringe:


6. Main SVP containers: Extractable Considerations


BARREL –
Glass, COC/COP, PP, Silicone Oil, ...

NEEDLE –
Metals, Tungsten (W), Needle Glue, ...

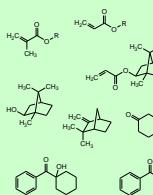
RUBBER SEALINGS (Plunger, Tip Cap,..)

SECONDARY (Needle Shield, Label, Stem, ...) –
Rubber, Label Adhesive, Overwrap for Polymer based Containers...

6. Main SVP containers: Extractable Considerations

Pre-Filled Syringes

- **BARREL:** **Metals** (may not be necessary to be studied in EXT Study, if glass composition is available, direct assessment in LEA study)
Silicone Oil residues may cause protein aggregation
- **Rubber Plunger (very similar to rubber stopper for vial):**
 - ✓ Typically, higher migration when solution is in contact
 - ✓ Migration will be determined by:
 - Solubility of leachables in **Drug Product** Solution
 - Potential **Diffusion of Compounds through rubber**, into solution
 - **Temperature**
 - ✓ VOC, SVOC and NVOC may cause a safety issue
 - ✓ VOC, SVOC, NVOC, Silicone Oil and some Metals may also be **Reactive** with reconstituted DP: also potential Performance & Quality Issue!
 - ✓ Also, Ions may need to be “checked off”...
 - ✓ Coated versus Non-Coated plungers

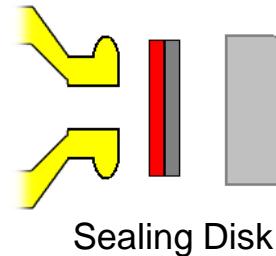

6. Main SVP containers: Extractable Considerations

Pre-Filled Syringes

- **GLUE for staked needle:** Glue residues may for protein denaturation
- **TUNGSTEN Residues:** May cause protein aggregation
- **NEEDLE SHIELD:**
 - **No Direct Contact** between DP and Needle Shield
 - **HOWEVER:** Release of **Volatile (VOC)** and **Semi-Volatile (SVOC)** Compounds from the Needle shield into the content of the PFS is possible!
 - VOC and SVOC may also be **Reactive with DP**: also potential Performance & Quality Issue!
 - Typically **No NVOC, Metals and Ions** investigation is necessary for a Needle Shield.

6. Glass versus Polymer SVP-Containers

Concern for - Glass PFS - Polymer PFS	Concern for - Glass PFS	Concern for - Glass PFS	Concern for - Glass PFS	Concern for - Polymer PFS	Concern for - Polymer PFS
(COATED) RUBBER	NEEDLE GLUE	TUNGSTEN (W)	GLASS BARREL	COC/COP/PP BARREL	LABEL (ADHESIVE)
<p>MONOMER REMAINDERS & POLYMER FRAGMENTS</p> <p>FILLERS: <i>Clay, Talc, Carbonates...</i></p> <p>ANTIOXIDANTS: <i>BHT, Irganox 1010, Irgafos 128, ...</i></p> <p>CURING AGENTS: <i>S,S-Donors, Phenol-Formaldehyde...</i></p> <p>ACTIVATORS: <i>ZnO / Stearic Acid</i></p> <p>ACCELERATORS: <i>Carbamates, Sulfenamides...</i></p> <p>OTHERS: <i>Pigments, Stabilizers, Release agents...</i></p> <p>Piston / Needle Shield / Tip Cap</p>	<p>- POLYMER FRAGMENTS - UV CURING- ACTIVATORS</p>	<p>A Tungsten pin is used in the production of glass pre-filled syringes to keep the syringe hub open (cavity where the staked needle is glued in)</p>	<p>Major: Silica (SiO₂)</p> <p>Alkali (e.g. Na₂O)</p> <p>Minor: K (K₂O), B (B₂O₃), Ca (CaO), Al (Al₂O₃)</p> <p>Colored glass: Fe₂O₃, TiO₂, CuO, Mn³⁺</p> <p>Sulfate (from dealkalization)</p> <p>Silicone oil (provides lubricity)</p>	<p>POLYMER FRAGMENTS SOLVENTS</p> <p>ANTIOXIDANTS: <i>BHT, Irganox 1010, ...</i></p> <p>ACID SCAVENGERS: <i>Stearate, ...</i></p> <p>LUBRICANTS: <i>FA Esters, ...</i></p> <p>WAXES</p> <p>SLIP ADDITIVES: <i>Erucomide, Oleamide, ...</i></p> <p>PLASTICIZERS</p> <p>RELEASE AGENTS</p> <p>PIGMENTS</p> <p>Optional: Silicone Oil</p>	<p>Permeable Plastic Materials (e.g. PP, ...)</p> <p>INK and ADHESIVE constituents in a complex composition, but at low concentrations</p> <p>POLYMER FRAGMENTS, SOLVENTS, PHOTO-INITIATORS, STABILIZERS, TACKIFIERS, ...</p> <p>e.g. Acrylates, PVA, NR, Benzophenone, Irgacure 184, Irgacure 651, Irganox 1010, Dehydroabietic Acid, DCHP, TBPP, Siloxanes, ...</p> <p>Potential Concern: SECONDARY PACKAGING</p>


6. Main SVP containers: Extractable Considerations

3. Cartridges

6. Main SVP containers: Extractable Considerations

Cartridges

➤ **Sealing Disk:**

- ✓ Typically, a sealing disk is a **two-layered** system
- ✓ The **inner layer** has **product contact** (primary contact), should be the focus of the investigation
- ✓ **“One Sided” extraction** mimics the product contact, avoids contribution of the outer layer
- ✓ **Complete Extraction** of the 2 layered sealing disk can be considered as **“Worst Case”**
- ✓ Both approaches can be taken and have found regulatory acceptance

6. Main SVP containers: Extractable Considerations

Cartridges

- **BARREL: Metals** (may not be necessary to be studied in EXT Study, if glass composition is available, direct assessment in LEA study)
Silicone Oil residues may cause protein aggregation
- **Cartridge Plunger (same as for PFS!):**
 - ✓ Typically, higher migration when solution is in contact (inverted)
 - ✓ Migration will be determined by:
 - Solubility of leachables in Reconstitution Solution (typically inorganic aqueous solution
(typically low solubility for most non-polar organic compounds)
 - Potential Diffusion of Compounds through rubber, into solution
 - Temperature
 - ✓ VOC, SVOC and NVOC may cause a safety issue
 - ✓ VOC, SVOC, NVOC, Silicone Oil and some Metals may also be **Reactive** with reconstituted DP: also potential Performance & Quality Issue!
 - ✓ Also, Ions may need to be “checked off”...

Setting up an Extractable & Leachable Program: for Small Volume Parenterals

Focus on the Application

See presentations

- **Aqueous** versus **Non-Aqueous** Drug Products
- **Liquid** versus **Solid** (Lyo) drug product
- **Dosing Regimen** (frequency, volume) determines **AET level**
 - Vaccine (e.g. once in a lifetime)
 - Life time treatment (e.g. Insulin cartridges)
- Both at the level of an **Extraction Study & a Leachable Study**
- **Single Use Vial** versus **Multi Use Cartridge**
- **Biologics** versus **Small Molecule** Drug Products

How to Set-up Extractable Studies

How to Set-up Leachable Studies

Introduction to Toxicology (101)

Questions?

