

THE ANALYTICAL EVALUATION THRESHOLD:

PDA TRAINING COURSE
EXTRACTABLES – LEACHABLES
VIENNA
23 – 24 OCT 2025

Pieter Van Wouwe, PhD

- 1. E&L testing - basic principles**
- 2. The analytical evaluation threshold**
 - 2.1 Definition and concepts**
 - 2.2 The safety concern threshold (AET)**
 - 2.3 The maximum daily dose (MDD)**
 - 2.4 The uncertainty factor (UF)**
 - 2.5 Examples**
- 3. Summary**

1. E&L testing – basic principles

Safety Threshold driven approach

Extractables study

PHARMACEUTICAL
CONTAINER

What **CAN** come out

FOCUS: Identification

Worst case conditions

Leachables Study

DRUG PRODUCT

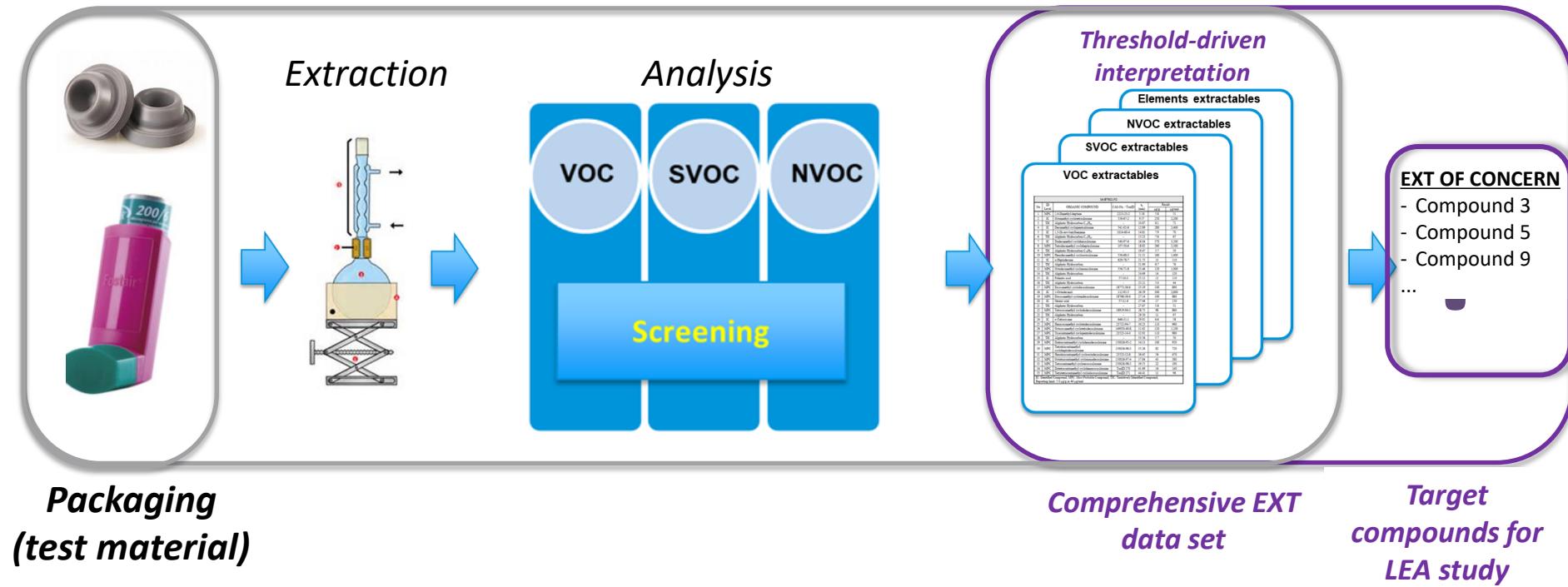
What **DOES** come out


FOCUS: Quantification

Normal conditions

Bridging

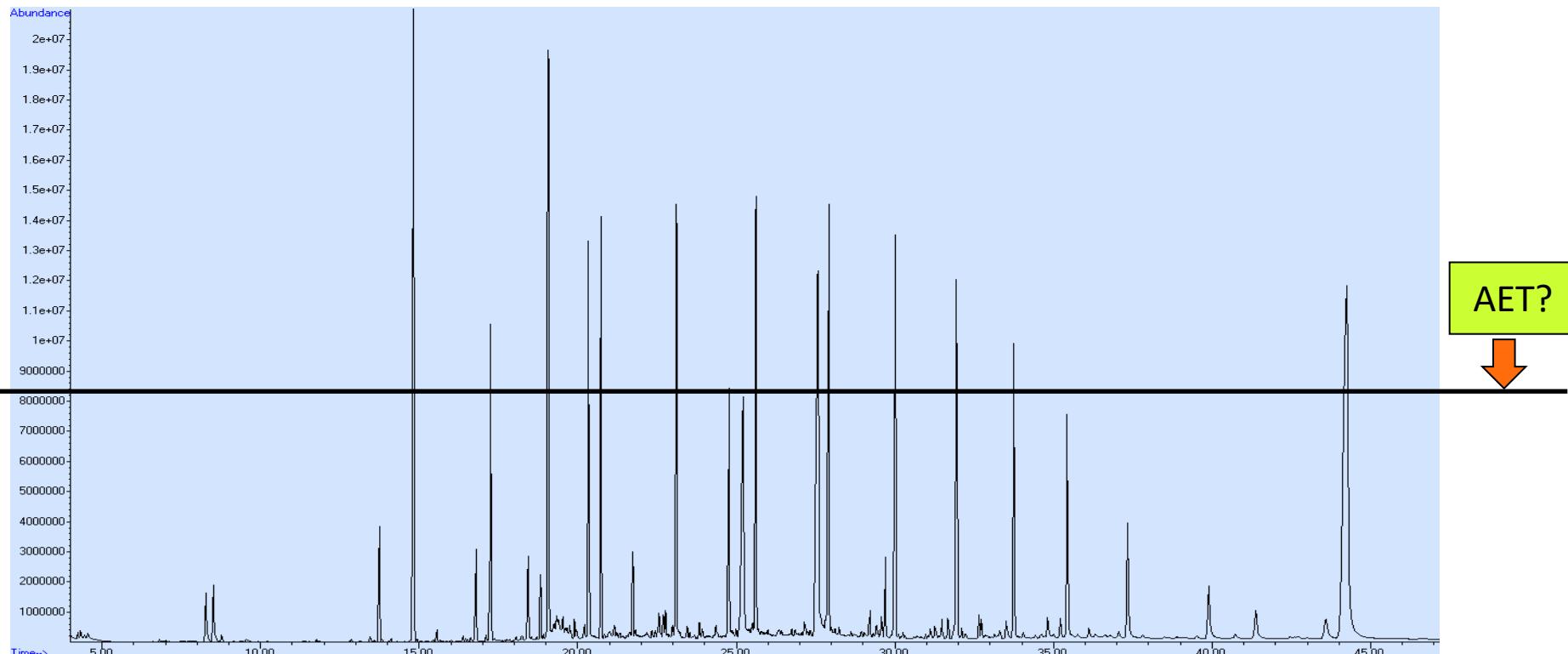
Screening


Bridging

Targeted
&
Screening

1. E&L testing – basic principles

TYPICAL EXTRACTABLES STUDY


Applying threshold approach filters out “Extractables of Concern”

- Safety evaluation on results of an extractables study
- Critical information for leachables study

- 1. E&L testing - basic principles**
- 2. The analytical evaluation threshold**
 - 2.1 Definition and concepts**
 - 2.2 The safety concern threshold (AET)**
 - 2.3 The maximum daily dose (MDD)**
 - 2.4 The uncertainty factor (UF)**
 - 2.5 Examples**
- 3. Summary**

2.1 The AET – definition and concepts

AET = is defined as the threshold at or above which a chemist should identify and quantify (semi-quantification) a particular leachable and/or extractable and report it for potential toxicological assessment.

2.1 The AET– definition and concepts

Which information do we need to calculate the (final)AET?

$$(final) \text{ AET} = \frac{\text{SCT}}{\text{MDD} \times \text{UF}}$$

1. (generic) **toxicological threshold** (~in $\mu\text{g}/\text{day}$)

2. A **maximum daily dose/exposure to the patient**
 (~in L/day for a leachables study)
 (~in units/day for an extractables study)

3. An analytical **uncertainty factor**

= translation of toxicological threshold ($\mu\text{g}/\text{day}$) to a
 an analytical concentration ($\mu\text{g}/\text{L}$ or $\mu\text{g}/\text{unit}$)

SAFETY CONCERN THRESHOLD

“Threshold below which a leachable would have a dose so low as to present negligible safety concerns from carcinogenic and non-carcinogenic toxic effects”

$$(\text{final}) \text{ AET} = \frac{\text{SCT}}{\text{MDD} \times \text{UF}}$$

PQRI (Product Quality Research Institute)

- SCT dependent on the **administration route** of the final product:
 - **0.15 µg/day** for OINDPs (Orally Inhaled and Nasal Drug Products)
 - **1.5 µg/day** (cf. TTC of ICH M7) for PDPs (Parenteral Drug Products)
 - ODPs: Ophthalmic Drug Products (concentration based thresholds)
 - Oral and Topical/Transdermal products (no thresholds defined)

2.3 The AET – maximum daily dose

For a **leachables** study (~results in $\mu\text{g}/\text{L}$)

Maximum daily dose volume (in L/day)

-> For e.g. **1 mL/day** for a vaccine, **0.5 L/day** for a LVP drug product

$$(\text{final}) \text{ AET} = \frac{\text{SCT}}{\text{MDD} \times \text{UF}}$$

For an **extractables** study (~results in $\mu\text{g}/\text{test item}$ or $\mu\text{g}/\text{g}$)

Maximum test items/g of test item exposed per day

-> For e.g. a rubber stopper of a vial, and 2 vials are administered per day, **2 rubber stoppers/day** are exposed to the patient

2.4 The AET– the uncertainty factor

ANALYTICAL UNCERTAINTY FACTOR

To account for the analytical uncertainty of the screening method (response factor variation)

Previously: UF of 2 was typically accepted (PQRI (OINDP))

$$(\text{final}) \text{ AET} = \frac{\text{SCT}}{\text{MDD} \times \text{UF}}$$

Current state of the art:

- Based on In-house database:

$$UF = \frac{1}{(1 - RSD)^*} \quad *RSD = \text{relative standard deviation of response factors}$$

Table 1: Overview of the statistical evaluation of the RRF values for GC/MS and LC/MS (APCI and ESI)

Technique/ Method	Nelson Labs SOP	Nº of RRF Entries	Average RRF	Standard Deviation	RSD	Uncertainty Factor (UF)
GC/MS	SOP0487 SOP0245	2194	0.61	0.30	0.49	2
LC/MS (APCI)	SOP0264	652	0.84	0.67	0.80	5
LC/MS (ESI)	SOP0268	201	1.04	0.79	0.76	(4) =>5

ISO 10993-18
USP1664
ICHQ3E

2.5 The AET – Examples

Leachable study (~in µg/L drug product)

Polio Vaccine

Safety concern threshold = 1.5 µg/day

Max daily dose volume: 0.001 L/day

mAB for treatment of arthritis

Safety concern threshold = 1.5 µg/day

Max daily dose volume: 0.020 L/day

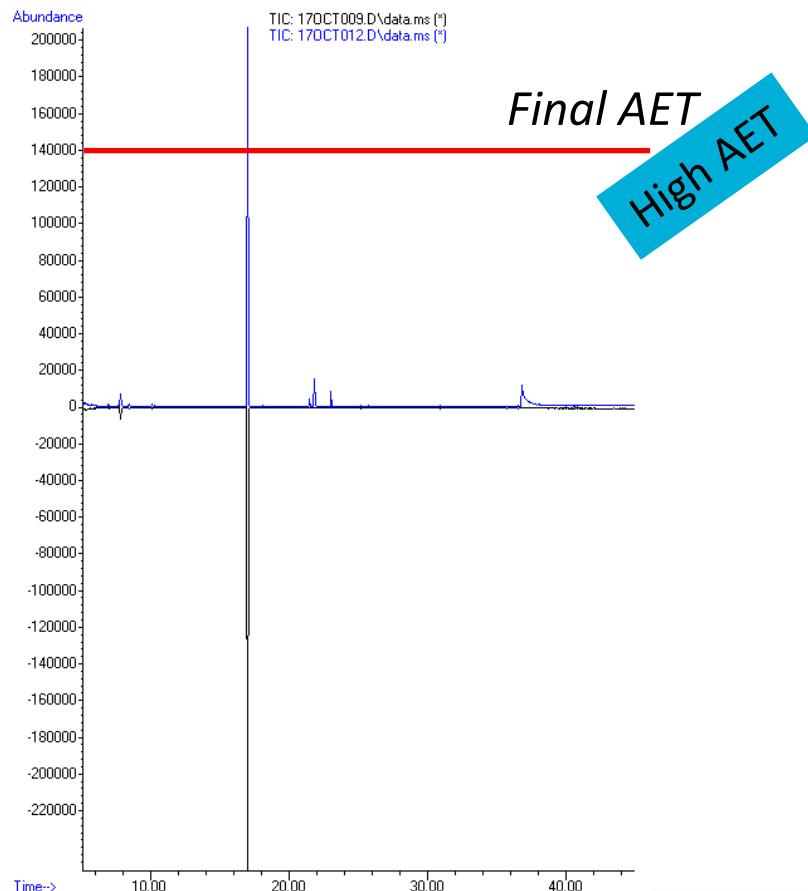
$$\text{(final) AET} = \frac{\text{SCT}}{\text{MDD} \times \text{UF}}$$

$$\text{(final) AET} = \frac{1.5 \text{ } \mu\text{g/day}}{0.001 \text{ L/day} \times \text{UF}}$$

$$= \frac{1500 \text{ } \mu\text{g/L}}{\text{UF}}$$

$$\text{(final) AET} = \frac{1.5 \text{ } \mu\text{g/day}}{0.020 \text{ L/day} \times \text{UF}}$$

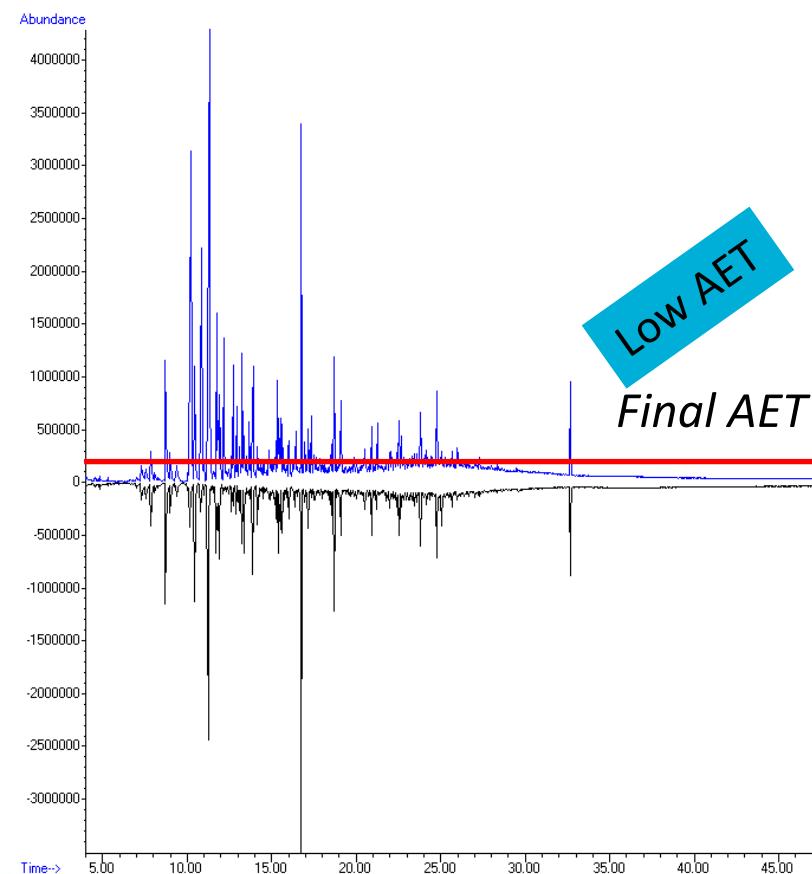
$$= \frac{75 \text{ } \mu\text{g/L}}{\text{UF}}$$


UF = 2 for (HS-)GC/MS and 5 for HRAM-UPLC/MS

2.5 The threshold approach – organic compounds

Polio Vaccine

Safety concern threshold = 1.5 µg/day


Max daily dose volume: 0.001 L/day

mAB for treatment of arthritis

Safety concern threshold = 1.5 µg/day

Max daily dose volume: 0.020 L/day

2.5 The threshold approach – organic compounds

Extractables study (~in µg/test item)

Barrel of a prefilled syringe (containing 0.8 mL of DP)

-> 1 prefilled syringe is administered maximum per day

Safety concern threshold = 1.5 µg/day

Maximum daily exposure to a patient: 1 barrel/day

$$(\text{final}) \text{ AET} = \frac{1.5 \text{ } \mu\text{g}/\text{day}}{1 \text{ barrel}/\text{day} \times \text{UF}}$$

$$= \frac{1.5 \text{ } \mu\text{g}/\text{barrel}}{\text{UF}}$$

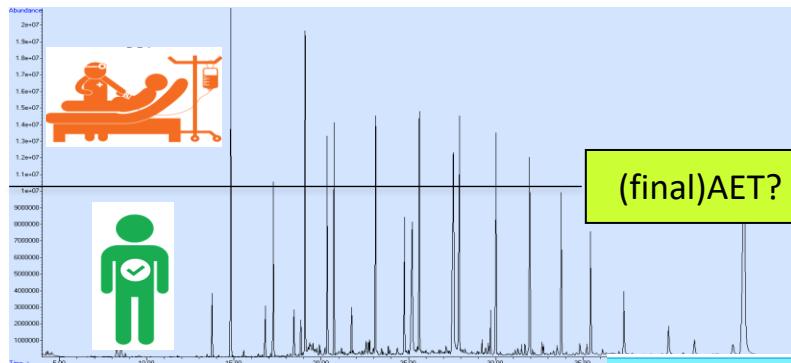
UF = 2 for (HS-)GC/MS and 5 for HRAM-UPLC/MS

Extractables study (~in µg/test item)

Label of a LDPE bottle (90 mL fill volume, containing 60 max. daily doses of 1.5 mL)

Safety concern threshold = 1.5 µg/day

Maximum daily exposure to the patient: 1/60 label/day


$$\text{(final) AET} = \frac{1.5 \text{ µg/day}}{1/60 \text{ label/day} \times \text{UF}}$$

$$= \frac{90 \text{ µg/label}}{\text{UF}}$$

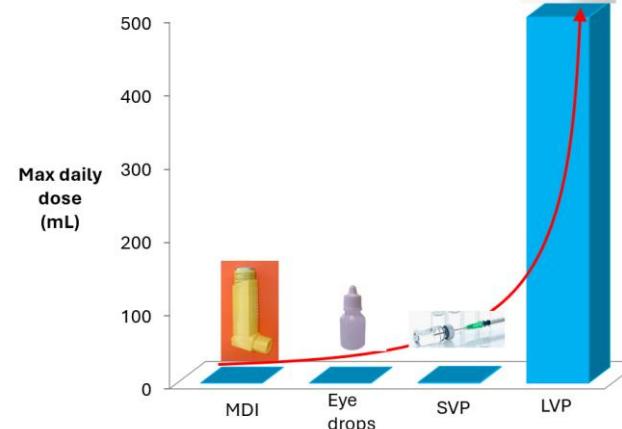
UF = 2 for (HS-)GC/MS and 5 for HRAM-UPLC/MS

- 1. E&L testing - basic principles**
- 2. The analytical evaluation threshold**
 - 2.1 Definition and concepts**
 - 2.2 The safety concern threshold (AET)**
 - 2.3 The maximum daily dose (MDD)**
 - 2.4 The uncertainty factor (UF)**
 - 2.5 Examples**
- 3. Summary**

3. Summary

Analytical uncertainty factor

$$UF = \frac{1}{(1 - RSD)}$$


$$(final) AET = \frac{SCT}{MDD \times UF}$$

Generic tox threshold

-> 1.5 µg/day for PDP

Maximum daily dose

