

Case Study: Systemic Evaluation of Vial Container Closure System Suitability at Frozen Conditions

- Peter Sargent, Eli Lilly and Company

Agenda

- Background
- Risk Assessment
 - Suitability Hazards
- Phase based strategy
 - Screening Assessment
 - Development
 - Scale Up
- Takeaways

Background

Evolving needs for deep frozen storage

- Cell/gene therapies
- Vaccines

Opportunities for extended expiry

- Increased protein stability for biologics
- Establish shelf-life with limited stability knowledge

COVID-19 VACCINE STORAGE REQUIREMENTS

PRIOR TO VIAL USE:

- Prior to thawing, store in an ultra-cold freezer between -80°C to -60°C
- Once thawed, the vial can be stored undiluted in two ways:
 - Up to 5 days in a refrigerator
 - No more than 30 minutes at room temperature

Once Vial is First Used:

- Store between 2°C and 25°C for no more than 6 hours.

DO NOT REFREEZE

PRIOR TO VIAL USE:

- Prior to puncturing the vial, the product can be stored in three ways:
 - Frozen between -25°C and -15°C (Recommended unless immediate use is necessary)
 - Refrigerated between 2°C and 8°C for up to 30 days
 - Unrefrigerated for up to 12 hours

Once Vial is First Used:

- Store between 2°C and 25°C for no more than 6 hours.

DO NOT REFREEZE

PRIOR TO VIAL USE:

- The product can be stored in two ways:
 - Refrigerated between 2°C and 8°C for no more than 3 months
 - Unrefrigerated between 9°C and 25°C for up to 12 hours.

Once Vial is First Used:

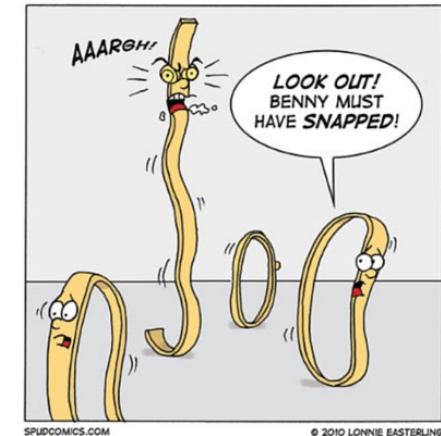
- The product can be stored in two ways:
 - Refrigerated between 2°C and 8°C for up to 6 hours
 - At room temperature for up to 2 hours.

DO NOT REFREEZE

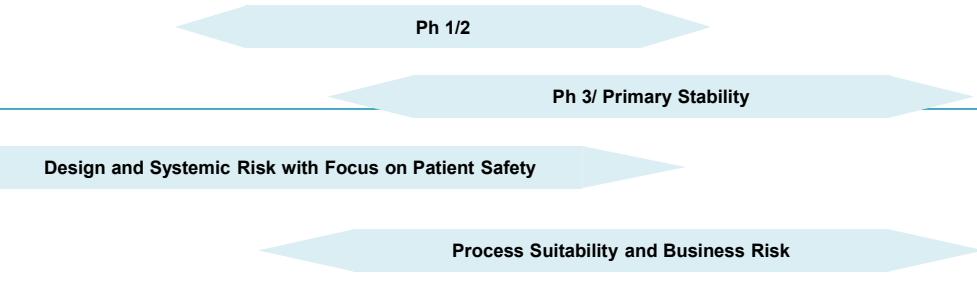
©2021 American Hospital Association | www.aha.org | March 2021

Risk Assessment: Suitability Hazards

Protection Risk


- Loss of elastomer elasticity below Tg
- Increased risk for breakage due to liquid expansion
- Difference of CTE (coefficient of thermal expansion)

Performance Risk



- Mechanical/thermal stresses of shipping
- Thermal stresses of processing streams
- In-use performance after thawing

Safety & Compatibility

- Frozen conditions favorable for DP stability and E/L

Risk Assessment: Phased Approach

Stage Description	Screen	Confirm	Develop	Scale Up
Activities	<ul style="list-style-type: none"> • Form/Fit Concerns • Finite Element Analysis 	<ul style="list-style-type: none"> • In-Use conditions • CT X-Ray • Inherent Leak (HeLD) 	<ul style="list-style-type: none"> • Head Space Analysis • Stability • Shipping Hazards 	<ul style="list-style-type: none"> • Process Mapping • Structural Integrity
Phase				
Focus	<p>Design and Systemic Risk with Focus on Patient Safety</p> <p>Process Suitability and Business Risk</p>			

- Right size the approach
- Gate transitions between phases
- Expand the system boundaries

Screening: Form / Fit + Computed Aided Engineering

Form fit: Component Stack Tolerances

Stopper Seal Commodity

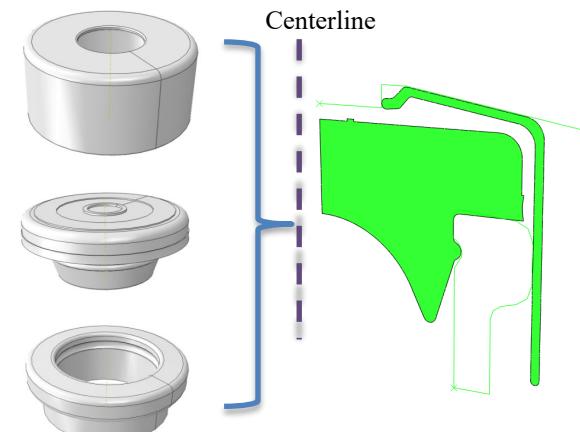
Vial Commodity

The screenshot shows the Livin' Item Tailor software interface. On the left, a 3D model of a necktie is displayed with dimensions A, B, and C labeled. On the right, a table of dimensions is shown:

Dimension	Min.	Max.	Min.	Max.	Min.	Max.
B (Neck ID)	0.167	0.255	0.538	0.745	0.172	0.272

CAE / Modeling: characterize component Materials of Construction as inputs

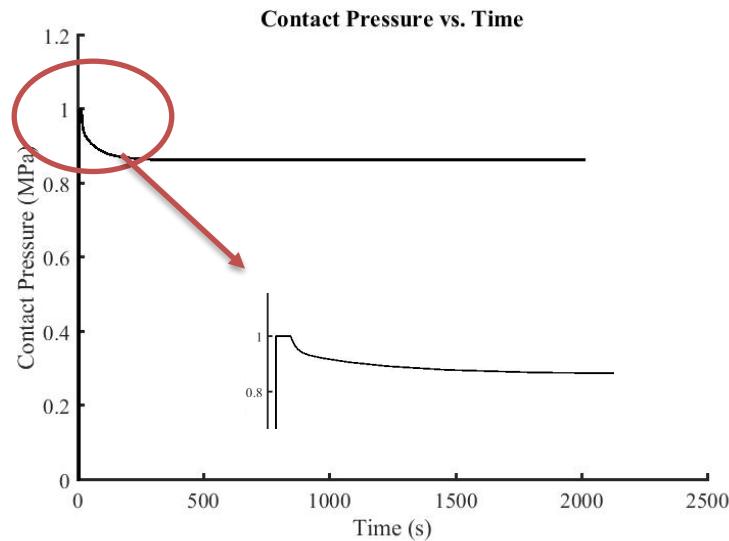
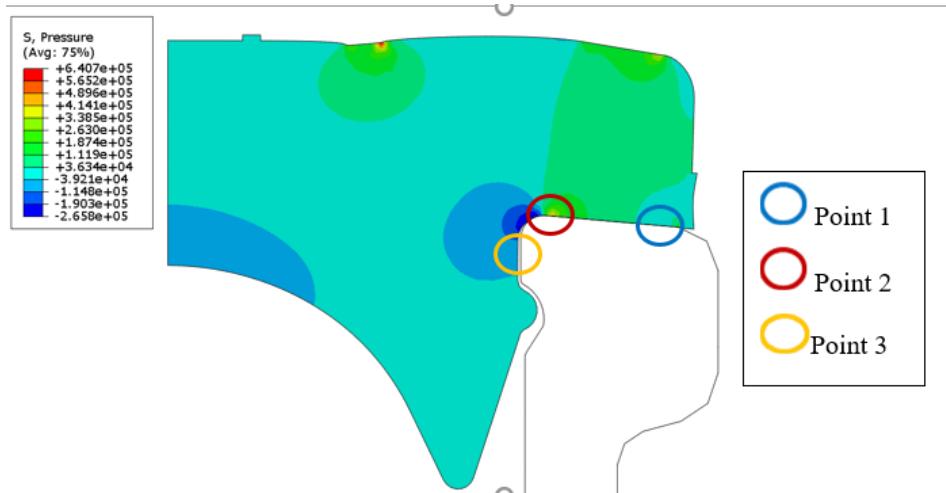
Vials


Assumed to be a rigid body

Elastomer

- Viscoelastic characterization $> T_g$
- Elasto-plastic characterization $< T_g$

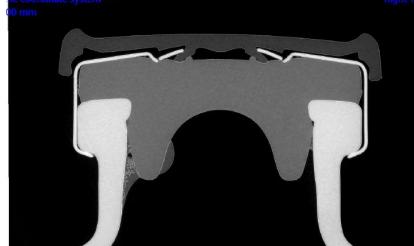
Seals



- T_g
- CTE
- Poisson

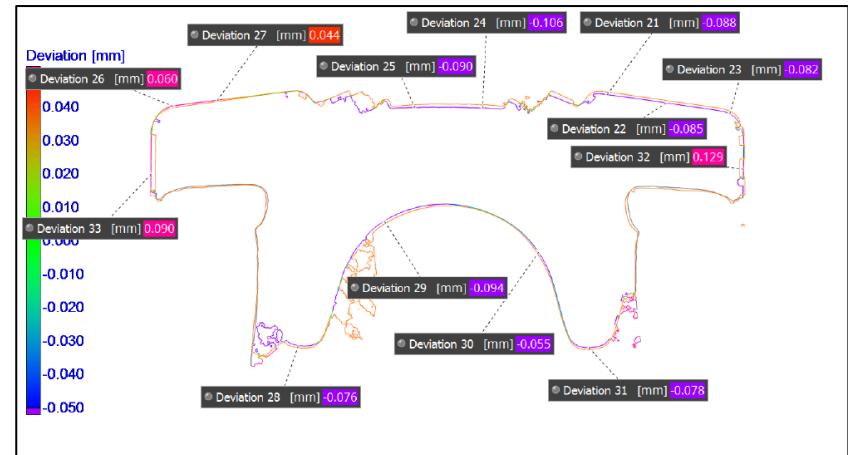
Screening: CAE

Evaluate contact pressure

- Consider shelf life
- Consider temperature


	Contact pressure (MPa)	Contact force (N)
Maximum	1	25.7
Relaxed	0.864	22.2

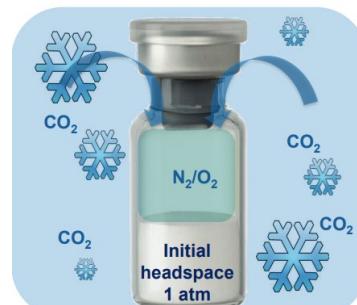
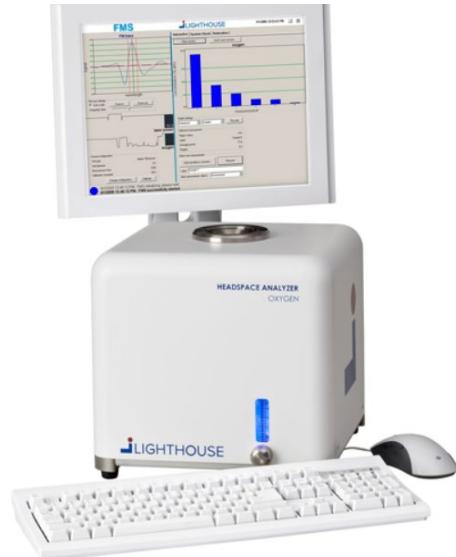
Development: CT Imaging


Confirm modeling assumptions via CT x-ray

– Look for variance between normal conditions and frozen

Pre-Freeze

Frozen



Development: CCI

Inherent Leak Rate

- Conduct as guided by USP <1207>
- Conduct at temperature via HELD
- Focused on design risk

Headspace Analysis

- Allows for CCI evaluation at in-use conditions
 - Incorporates temperature
 - Apply known shipping & shelf life constraints

- -78°C , headspace underpressure
- Stopper loose elasticity, interface gaps
- CO_2 in headspace
- Warm up, stopper reseals
- CO_2 trapped

Scale Up: Approach

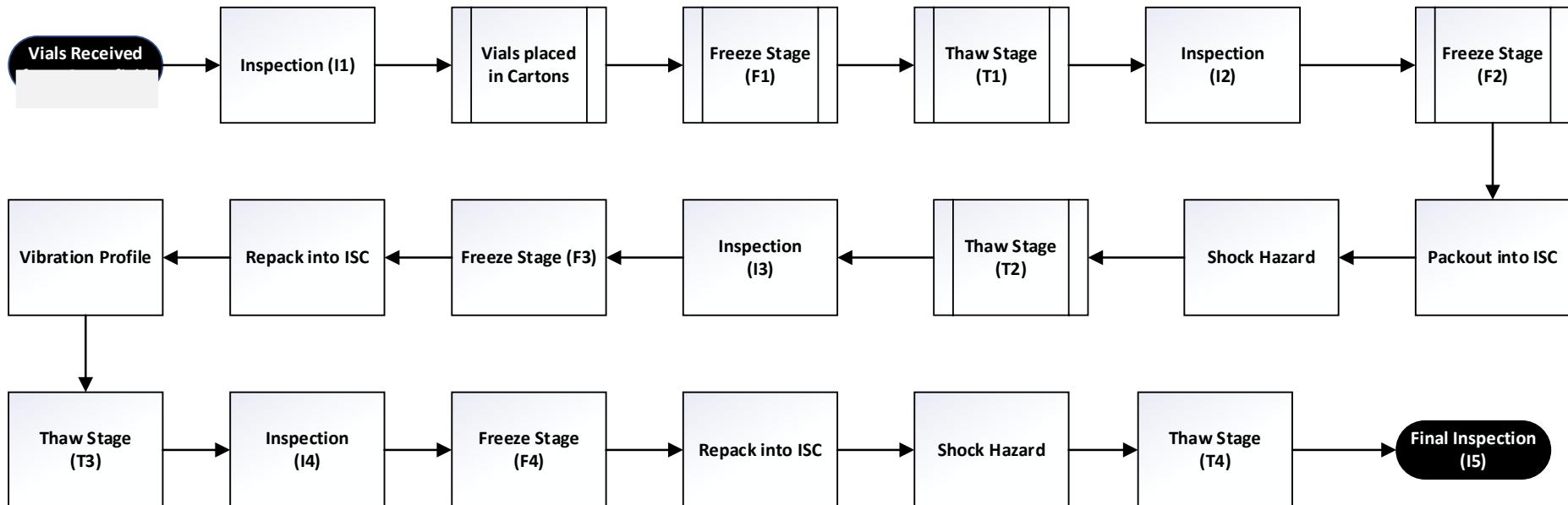
Shift the focus from systemic to residual risk

- Transition from design → process
- Emphasize control strategy development
 - Consider incoming, filling, and transit
 - Incorporate 2° packaging?
- Employ statistical powering

Scale Up: Structural Integrity

Hazards

- Liquid expansion at phase change
- Freeze/thaw at shipping nodes
- Mechanical stresses
 - Vibration and Drop during shipment
 - Glass to glass contact at filling


DOE considerations

- Storage Temperature/orientation
- Shipping conditions: temperature, method, e.g. dry ice
- Fill volume, CCS size
- Best outputs (RSF, CCI)

Scale Up: Process Mapping

Process Mapping

- Understand temperature transitions
- Build in high-volume production hazards
- Adopt a statistical approach and foundation

Takeaways

Risk Assessment Strategy
 Use a right sized, phase approach

Screen for Form/Fit issues at 'standard' conditions

- Machinability studies
- Stacked Tolerance Analysis

Confirm & Develop frozen use conditions

- Identify lower temp. bound in storage and shipping
- Understand supply chain risk points
 - Impact of Shipping Hazards
 - Temperature transitions

Apply a world view in the scale up process

- Transition to outcomes thinking
- Propagation of stresses means propagation of risk

Design and Systemic Concerns
Is it possible?

Establish baseline suitability
Focus on the destination

Expand the system boundary
 for risk
Focus on the journey

Acknowledgments

- Craig Kemp
- Craig Goldhammer
- Lin Li
- Michael Foubert
- Vijay Sharma
- Lei Li
- Mark Beidelschies
- Michael Boquet
- David Lyngholm