PDA Training Course Extractables & Leachables 25-26 April 2024

Analytical techniques used in E&L studies

Dr. Dries Cardoen

Overview

- Analysis of extractables & leachables is a challenge!
 - The Diverse World of Extractables
 - Sample Preparation Extract
- Analytical techniques for Organic Compounds
 - Instrumentation
 - Screening & Discovery of Organic Compounds FIRST PASS Approach
 - Structure elucidation SECOND PASS Approach
- Analytical techniques for inorganic compounds
- Validated Methods

Analysis of extractables & leachables is a challenge!

The Diverse World of Extractables

COPYRIGHT © PDA 2018

pda.org

Diversity in CCS

Broad spectrum of:

- Types of Containers
- Types of Materials used in the Manufacture of Containers
- Number of Suppliers per Material
- Number of Grades (per supplier) for each type of Material
- Type of Sterilization (impact on material impurity profile)

Pharmaceutical CCS

INHALATION

o Metered Dose Inhaler Components

e.g.:

- Gaskets
- Stem
- Body
- Metering Chamber
- Protection Ring
- Actuator
- Canister
- o Dry Powder Inhaler Components
- Nasal Spray Systems
- Nasal Dropper Systems
- o Blow-Fill Seal containers
- o Nebulizers
- 0...

OPHTHALMIC

- Eye Dropper Systems
- \circ Tubes
- o Blow-Fill-Seal containers

0...

PARENTERAL

- o Bottles
- \circ Vials
- o (Pre-Filled) Syringes
- Cartridges
- o (Rubber) Stoppers
- o Rubber Plungers
- •Sealing Discs
- \circ Needle Shields
- \circ Tip Caps
- \circ I.V. Bags
- o Administration Sets
- 0...

DERMAL/TOPICAL

- Spray Systems
- o Tube systems
- 0...

SINGLE USE SYSTEMS

- o (Multilayer) Bags
- o Tubings
- \circ Connectors
- o Ports
- Filters (+ Housing)
- o Chromatographic Columns
- Lyo trays
- 0...

SECONDARY PACKAGING

- Labels
- o Adhesive/Glue (e.g. on labels)
- o Ink
- o Overwrap foils
- o Blisters
- Cardboard packaging

0...

Materials of construction for CCS

- Low Density Polyethylene
- High Density Polyethylene
- \circ Polypropylene
- \circ Rubbers
- Butyl Rubbers
- \circ Chlorobutyl Rubbers w/o Coating
- Bromobutyl Rubbers w/o Coating
- EPDM Rubbers
- \circ Isoprene Rubbers
- Nitrile Rubbers
- \circ Latex Rubbers
- \circ Other Rubbers
- \circ Multi-layer Films and Foils
- Polyurethane (PU)
- Ethylvinyl Acetate (EVA)
- Ethylvinyl Alcohol (EVOH)

- Polyamide (Nylon-6, Nylon-66)
- Cyclic Olefin Copolymers (COC)
- Cyclic Olefin Polymers (COP)
- Polyethylene Terephthalate (PET, PETG)
- Polybutylene Terephthalate (PBT)
- Polyacetal (POM)
- Polymethylmethacrylate (PMMA)
- Acrylonitrile Butadiene Styrene (ABS)
- \circ Silicone
- Thermo Plastic Elastomers (TPE's)
- Polycarbonate
- \circ PTFE
- \circ PEEK
- Glass w/o Coating
- \circ Metals
- 0...

Suppliers for a given material

Polyethylene - produced by:

- \circ Borealis
- \circ LyondellBasell
- \circ SABIC
- o Dupont
- o Enichem
- o INEOS
- o TOTAL

0...

Pharmaceutical Rubbers – main Global Suppliers:

Datwyler
West Pharmaceutical
Stelmi

Each supplier has different (health care) grades!

Each supplier: different grades

Polyethylene (PE) - produced by:

Borealis: over 30 different Medical Grades
LyondellBasell: over 30 different Medical Grades
SABIC: over 30 different Medical Grades
Dupont: different grades
Enichem: different grades
INEOS: different grades
TOTAL: different grades

0...

Pharmaceutical Rubbers - main global suppliers:

Datwyler: over 100 different commercial rubber formulations
 West Pharmaceutical: over 100 different commercial rubber formulations
 Aptar: also, a broad range of commercial rubber formulations

Impurity profile of 1 grade

INTENTIONALLY ADDED

- o Pigments / colorants
- o Clarifying agents
- o Catalysts and Curing Agents
- o Fillers
- o Anti-oxidants
- o Plasticizers
- o Photostabilizers
- o Slip agents
- Acid scavengers
- o ...

NON-INTENTIONALLY ADDED

- o Related to the Polymer
 - Polymer Degradation Compounds
- Related to the Polymerization Process
 - Solvent residues
 - Monomers
 - Catalysts
 - Oligomers
- o Related to the additives
 - Additive degradation compounds
- Related to secondary packaging
 - Glue, Labels, Carton/Paper
- Processing Impurities
 - Lubricants, surfactants, solvents

o ...

Conclusion: diverse chemistry!

PHYSICO-CHEMICAL PROPERTIES OF EXTRACTABLES

- Organic ↔ Inorganic
- Polar ↔ Non-polar
- ∨olatile ↔ Non-volatile
- o Inert ↔ Reactive
- o Small ↔ Large
- \circ Charged \leftrightarrow Not charged

UNIVERSE OF EXTRACTABLES: 10.000 – 100.000 compounds

Analytical method: identification and quantification

COMBINATION OF ANALYTICAL TECHNIQUES REQUIRED

- For routine screening: labs need to be cost-effective
- Only possible with extensive material knowledge & databases

Analysis of extractables & leachables is a challenge!

Sample Preparation - Extract

COPYRIGHT © PDA 2018

Trace analysis is a challenge

- o Have very experienced people in sample preparation team
- Very **intensive training** for new staff in sample prep team
- QC on solvents used select batches of clean solvents with suppliers
- \circ QC on extraction equipment
- Separate glassware
- Precleaning of glassware validation of cleaning procedures
- o Sampling of test articles how to handle test articles?
- UPW sample prep should be separated from solvent sample prep
- o Correction for absorbed solvents?
- How to concentrate extracts while avoiding cross contaminations
- Storage of extracts under controlled conditions
- Holding times of extracts
- \circ Selection of type of containers for storage of extracts
- $_{\odot}$ How to keep DEHP out of the Lab!

pda.org

Analytical techniques for Organic Compounds

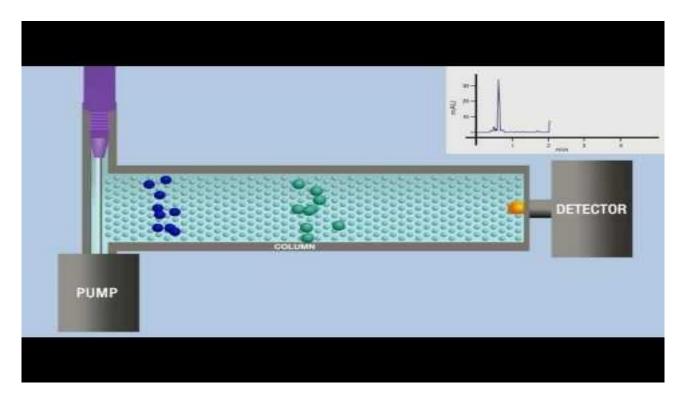
Instrumentation

Chromatography – Mass Spectrometry

COPYRIGHT © PDA 2018

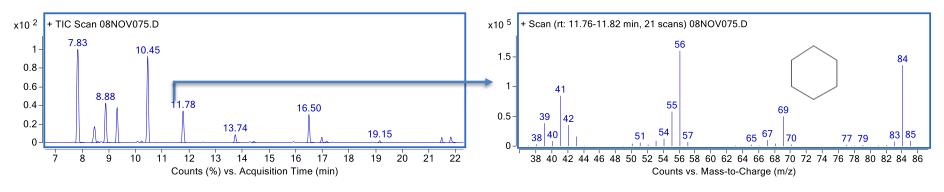
pda.org

Chromatography – Mass Spectrometry


- Complex mixture of compounds!
- Analysis is 2-step process:
 - Separation
 - Detection (+ structural information of detected compound)
- Chromatography:
 - Separation technique
 - Involves 2 'phases': stationary phase + mobile phase
- Mass Spectrometry:
 - Detection technique hyphenated to the chromatography system
 - Mass information of detected compounds

Chromatography – Mass Spectrometry

Video animation on chromatography separation principle



COPYRIGHT © PDA 2018

pda.org

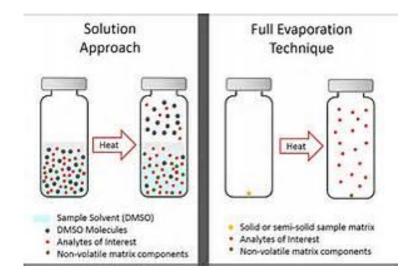
Chromatography – MS output

Chromatogram

- Analytical output from chromatography system
- Detector signal intensity in function of analysis time
- \circ Compound separation
- Retention time → depends on compound properties
- Peak area \rightarrow measure of quantity

Mass spectrum

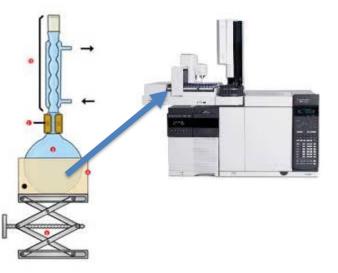
- o Analytical output from mass spectrometer
- Compound detection, but does more!
- Mass (fragment) information for each peak in chromatogram
- Very powerful tool for **identification**



Volatile Organic Compounds (VOC)

Headspace – Gas chromatography – Mass Spectrometry (HS-GC/MS)

- Monomer residues
- Solvent residues from production steps
- Residues from polymer treatments
- Small polymer degradation products



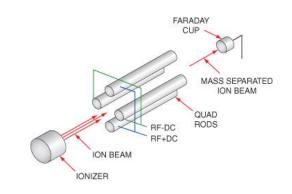
Semi-Volatile Organic Compounds (SVOC)

Gas chromatography – Mass Spectrometry (GC/MS)

- o Lubricants
- Plasticizers
- o Antioxidants
- Polymer degradation products
- Solvents with an elevated boiling point

GC

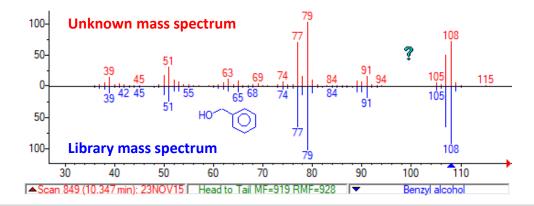
SEPARATION of (semi-)volatile organic compounds (Mw < 650 Da)


- Gas phase separation technique using narrow open tubular (capillarycolumns coated with a film of stationary phase, mounted in temperatureprogrammable oven
- Separation of compounds based on boiling point and polarity owing to variations in affinity with the stationary phase
 - VOCs: 6% cyanopropyl/phenyl and 94% polydimethylsiloxane, USP phase G43 (or DB-624)
 - SVOCs: 5% phenyl and 95% polydimethylsiloxane, USP phase G27 (or DB-5)
- A higher film thickness of stationary phase increases retention:
 - VOCs: high film thickness (eg 1.4 μm): more retention for smaller volatile compounds
 - SVOCs: low film thickness (eg 0.25 μm)
- Length of capillary column increases resolution (but increases analysis time as well)
 - VOCs: eg 60m capillary column
 - SVOCs: eg 30m capillary column
- Not well suited for polar compounds like acids, amines, diols... Where specific conditions may need to be applied

MS (coupled to GC)

DETECTION & MASS-BASED SEPARATION

- 3 events: ionization / mass separation / detection all happening under high vacuum
- \circ lonization: electrion ionization (70 eV) → convert molecule into ion and induce further fragmentation
- Quadrupole mass analyzer:
 - Scanning mass filter → only 1 mass can pass through a given electric field
 → other masses are removed
 - By rapidly sweeping the electric field \rightarrow scanning of a mass range
 - Scanning goes extremely fast: milliseconds
 - Ions that reach the detector induce a signal that is measured
 - Mass spectrum: bar-graph plot of signal intensity vs. mass (unit)
 - Multiple mass spectra are recorded each second of the analysis (~ 3 scans/second)



GC/MS spectrum

GC/MS spectra are "standardized"

- Most GC/MS instruments for routine use make use of electron ionization single quad technology
- Electron ionization (and associated molecule fragmentation) is a very reproducible event
 Reproducible mass spectra are obtained across different instruments across the world
- Obtained mass spectra can be compared to commercial databases or in-house databases
 In case of a good match may lead to identification of the compound

Non-Volatile Organic Compounds (NVOC)

Ultra Performance Liquid chromatography – Mass Spectrometry (UPLC/MS)

- o Fillers
- o Plasticizers
- o Antioxidants
- o Anti-slip agents
- \circ Oligomers

UPLC

- **Separation** technique suited for non-volatile organic compounds (NVOCs)
- **Liquid-based** separation technique using columns **packed** with stationary phase 0
- Using high pressure to pump sample dissolved in mobile phase through packed Ο column
- Separation of compounds based on affinity for the stationary phase
 - Polar stationary phases: straight phase chromatography
 - hydrophilic interaction chromatography (HILIC) stationary phase
 - Packing material Apolar stationary phases: reversed phase chromatography: MOST COMMON
 - hydrophobic C18-bonded silica, USP phase L1
- **Optimizing separation by** 0
 - Selection of chromatographic <u>column</u> (length, polarity of stationary phase)
 - Selection of <u>mobile phase</u> (water, methanol, acetonitrile or mixtures or gradients)
 - Effective gradient: ends with strong mobile phase: purpose to elute strongly retained compounds (mitigating injection-to-injection carry-over)
- **Detection**: \cap
 - Diode Array Detection (DAD using UV spectrum)
 - (high resolution accurate mass) Mass Spectrometry (primary choice)

Stainless stee

PEEK

DAD/UV detector	199
	60000 <u>-</u>
	40000
	20000
Advantages:	0 200

- Standard equipment in analytical lab Ο
- Low cost \cap
- UV detection simultaneous with MS detection: can be used as add-on detector \cap

199

236

310

300

wavelength (nm)

Broad dynamic range Ο

Disadvantages:

- Not universal / generic (chromophore needed for detection) Ο
- Limited sensitivity, depending on chromophore(s) Ο
- Poor specificity, even for Diode Array Detectors (scanning UV) Ο
 - \rightarrow Information about detected molecule is limited (e.g. link with API?)

400

MS (coupled to LC)

Advantages:

- Increased specificity: (exact) mass
- Increased sensitivity
- Mass spectra may reveal more information about the identity of the compound
- \circ Allows for building (in-house) mass spectral databases

Disadvantages:

- o Higher cost
- Contrary to GC/MS: no universal spectra (depends on ion source design, mobile phase, MS settings, ...) → no universal libraries!
- \circ $\,$ Need for multiple ionization methods to allow a broader range of target

Ionization vs Compound Range

- Electron Ionization: only works in gas phase under vacuum \rightarrow not LC compatible
- Atmospheric Pressure Chemical Ionization (APCI): LC up to medium polarity
- ElectroSpray Ionization (ESI): LC medium polarity high polarity

Nowadays: more and more both APCI & ESI in E&L study design

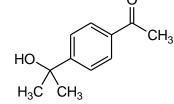
Modern LC/MS instrumentation

Older systems:

- Quadrupole or ion trap (cf. GC/MS)
- \circ Low resolution: unit mass e.g. m/z 220 can be distinguished from m/z 221

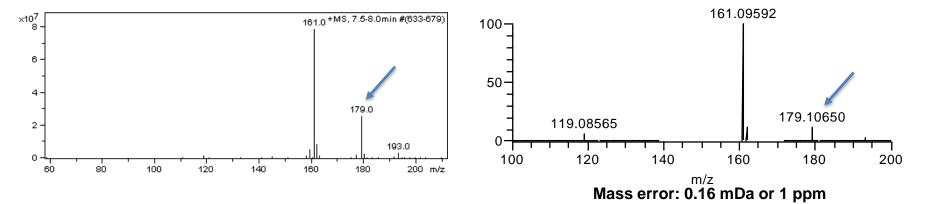
Nowadays:

- **Q-TOF** or **Orbitrap** technology
- High resolution & mass accuracy (HRAM) e.g. m/z 220.000 can be distinguished from m/z 220.002
- High accuracy may allow determination of elemental formula when molecular ion is detected
- Extremely powerful technique in combination with UPLC when developing inhouse high resolution MS databases in combination with retention time of reference compounds
- Contrary to GC/MS, UPLC/HRAM-MS is used in "first-pass" screening to compensate for the lack of mass spectral fingerprinting and availability of commercial databases like in GC/MS



Modern LC/MS instrumentation

```
LC-QUADRUPOLE
(LOW RESOLUTION)
```



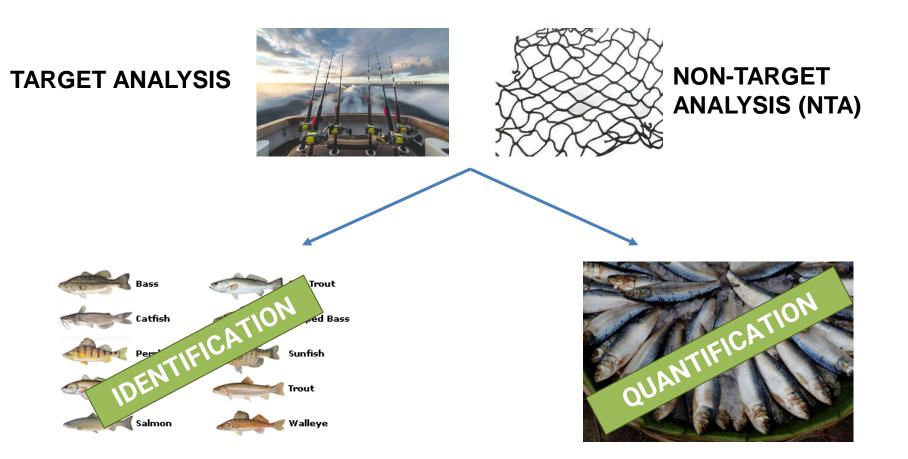
Peroxide curative related compound from EPDM rubber Exact mass: 179.10666

VALUE OF ACCURATE MASS: SEE LATER

Analytical techniques for Organic Compounds

Screening & Discovery

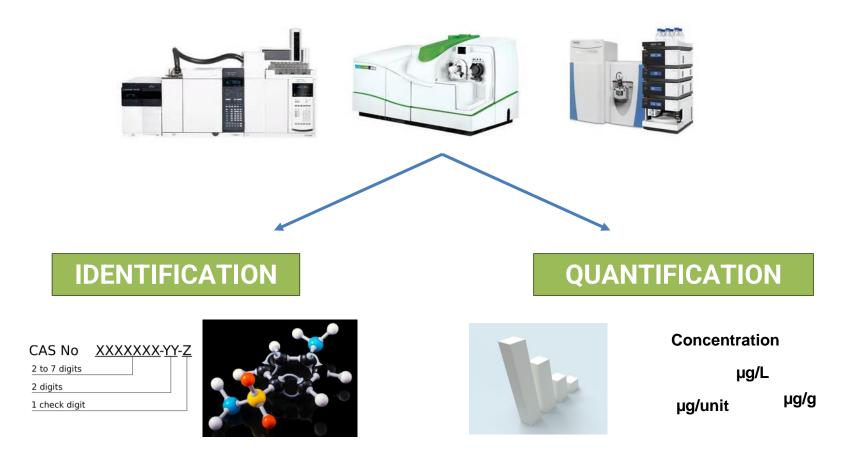
Chromatography – Mass Spectrometry



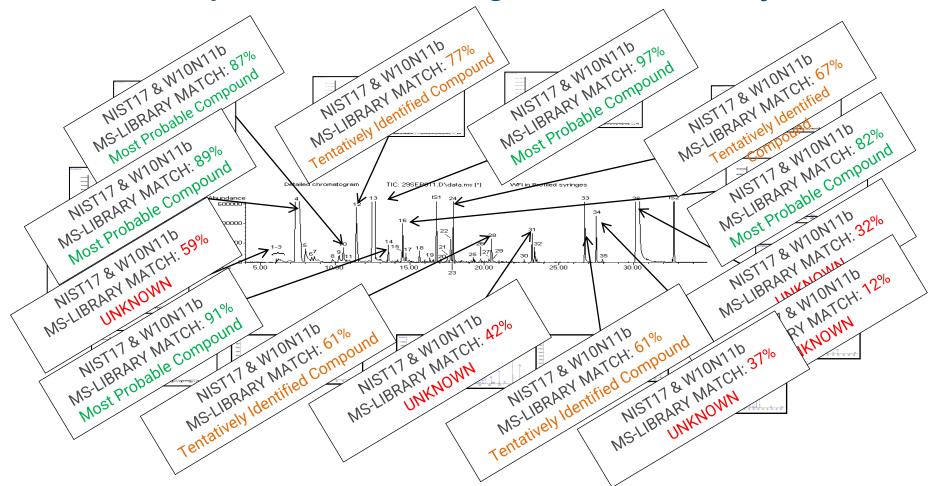
COPYRIGHT © PDA 2018

pda.org

Different fishing techniques



Different analytical techniques


Concept of "screening" or "discovery"

- Non-targeted analysis (NTA) mode used in extractables studies (organic comp)
- Trying to **IDENTIFY** every peak in a chromatogram...
- ... above a certain threshold:
 - o Either based on analytical feasibility (reporting threshold)
 - Or based on toxicological threshold (e.g. AET)
- Generate a list of extractables from the tested material with focus on identification
- Screening is **estimated** or **semi-quantitative**: estimation of concentration
- Useful for follow-up in a leachables study

Concept of "screening" or "discovery"

Quantification in screening

Screening is untargeted \rightarrow no prior knowledge about extractables / leachables profile In case many extractables reported \rightarrow accurate quantification for all is not practically feasible

Estimated quantification

- Internal standard (I.S.) compound spiked to each (final) extract
- Assumption that response of analyte = response of I.S. (response factor = 1)
- Accounts for instrument variation
- Does not account for different response vs I.S. or liquid/liquid recovery

Semi-quantitative quantification

- Internal standard (I.S.) compound spiked to each (final) extract
- Record analytical response of standard vs response of I.S. \rightarrow relative response factor (RRF)
- o Correct concentrations of confirmed ID's with RRF
- Accounts for instrument variation + response variation of analyte vs I.S.

Analytical techniques for Organic Compounds

SECOND PASS Approach (Structure Elucidation)

COPYRIGHT © PDA 2018

Structure elucidation - Introduction

- Unknown / Partially identified compounds > AET in 1st pass screening
 - Unknowns are treated as carcinogenic/mutagenic
 - To allow de-risking by tox assessment, a **structure is needed**!
- Request to **further increase ID level** (e.g. low margin of safety)
 - Tentative to Confident
 - Confident to Confirmed (standard should be available or synthesized)
- Goal of identification studies: generate / collect comprehensive set of supporting data to increase the identification level of a target compound

Structural elucidation - Instrumentation

Liquid Chromatography

FT-Ion Cyclotron Resonance

Orbitrap

Requirements

- High-end mass spectrometers
- (Very) high resolution
- High mass accuracy
- Multiple ionization methods
- Tandem mass spectrometry

Gas Chromatography

o Q-TOF

• Orbitrap

0

0

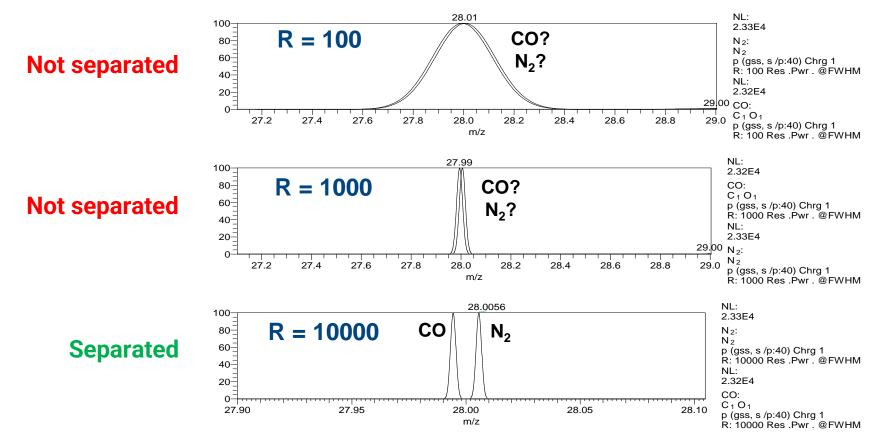
Structural elucidation - HRAM

Element	Nominal Mass	Exact Mass
Hydrogen (H)	1	1.0078
Carbon (C)	12	12.0000
Nitrogen (N)	14	14.0031
Oxygen (O)	16	15.9949

Nitrogen gas: N₂ Nominal mass: 28 Da Exact mass: 28.0062 Da

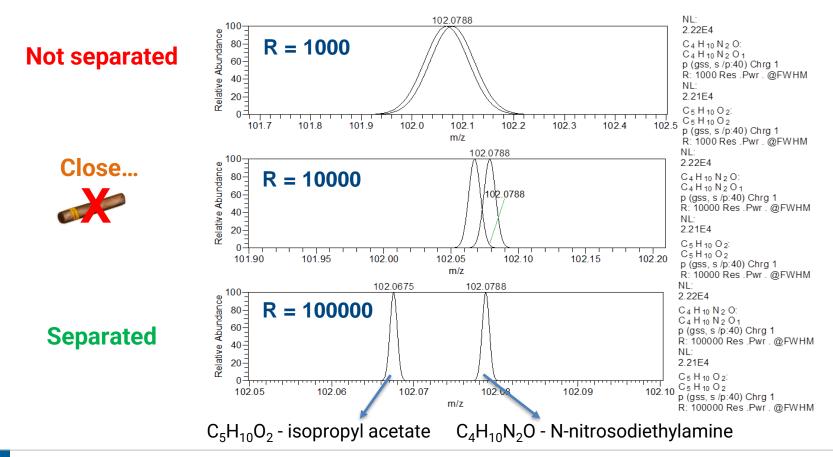
Carbon monoxide: CO

Nominal mass: 28 Da Exact mass: 27.9949 Da


Difference: 0.0113 Da

Structural elucidation - HRAM

Misidentification of a compound with a mass of 28 Da can be fatal... how to be sure?



Structural elucidation - HRAM

E&L example: 2 compounds where both have nominal mass 102...

HRAM – Important take-aways

accurate mass alone does not deliver a structure...

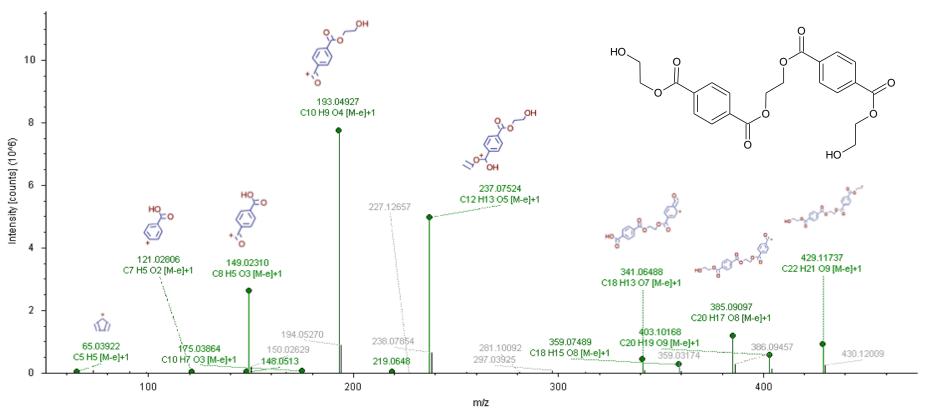
... but delivers **the elemental formula** of the molecule and fragments of the molecule

high resolution does not deliver a structure...

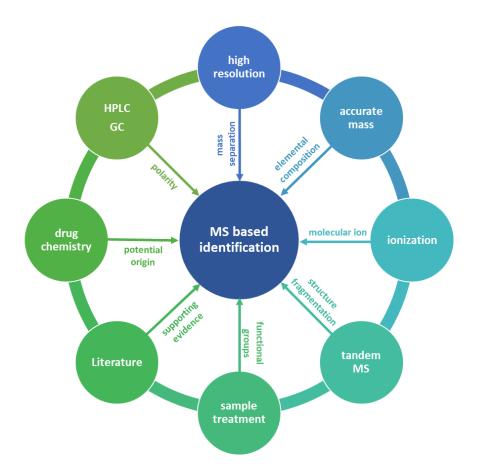
... but enables to **separate molecules** with the same nominal mass but different elemental formulas

...but assists in confirming the elemental formula using isotope matching

Mass spectral interpretation skills and expertise are required



Tandem Mass Spectrometry (MSⁿ)


- 1. Select molecular ion & induce fragmentation
- 2. Measure all molecule fragments with HRAM

Multi-angle approach required

TEAM effort!

Mass spec expert(s)

Drug chemistry expert

Material engineer

Inorganic Compounds

Analytical Techniques

COPYRIGHT © PDA 2018

Elements

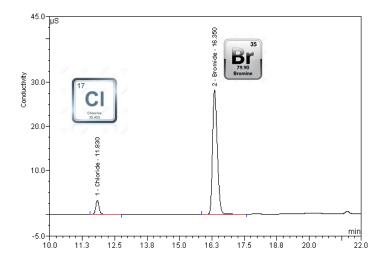
Inductively Coupled Plasma / Optical Emission Spectroscopy or MS

Origin of elements

- Metals from glass
- Metals from rubbers
- Catalysts, used during polymerization process
- Fillers, added to polymer materials
- Acid scavengers
- Activators for rubber polymerization

Technique

- ICP to produce excited atoms
- Excited atoms recombine, giving off electromagnetic radiation at wavelengths characteristic for each element
- \circ Emission wavelengths detected by the spectrophotometer
- $\,\circ\,$ Or ions detected by mass spectrometry
- o Intensity correlates to concentration → quantitative technique



Anions

Ion Chromatography (IC)

Origin of anions

- Polyolefins: formate / acetate as oxidation products
- Halobutyl rubbers: bromide, chloride, fluoride
- Fluoropolymers: fluoride
- Trace impurities: nitrite, nitrate, phosphate, sulfate

Example: UPW extract of a halobutyl rubber

Technique

- Special liquid chromatography technique
- Designed for separation and detection of ions
- <u>Detection</u>: conducitivy or amperometry

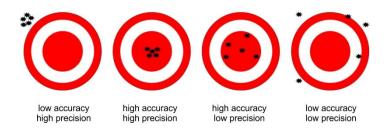
Other specific analytical methods

- **GF-AAS** for silicone oil detection and quantification
- HPLC-UV for TMPTMA (glue residue)
- HPLC-UV for S₈ (cross-linker)
- **pH** (release of acidic/alkalinic agents in UPW)
- **Conductivity** (release of salts in UPW)
- Non-Volatile Residue (gravimetric residue after evaporation of extract)
- FTIR characterization of NVR
- **Total Organic Carbon**: reconcilliation with concentration of organic compounds from chromatographic techniques
- o ...

Validated Methods

For accurate quantification

COPYRIGHT © PDA 2018



Validated methods

- Chromatography Mass Spectrometry instrumentation more or less the same
- Except: triple quadrupole (QqQ) instead of single quadrupole (selectivity + sensitivity)
- Validated methods are targeted \rightarrow leachables to be quantified are a priori known
- Methods are **specifically developed and optimized** for the target leachables

Validated quantification

- Specific internal standard for each target leachable
- Quantitative performance of method is validated:
 - Selectivity / Specificity → no interference from blank signal, drug matrix, other leachables...
 - Limit of detection / Limit of quantification → lowest concentration level for accurate quant
 - Linear range → concentration range validated for accurate quantification
 - Precision → variability of analytical method
 - Accuracy → closeness to true value

COPYRIGHT © PDA 2018

