PDA Training Course Extractables & Leachables 25-26 April 2024

POLYMERS 101

Dr. Piet Christiaens

OVERVIEW

- 1. Definition and classification
- 2. Types of polymers
- 3. Properties of polymers
- 4. On the origin of extractables species

OVERVIEW

- 1. Definition and classification
- 2. Types of polymers
- 3. Properties of polymers
- 4. On the origin of extractables species

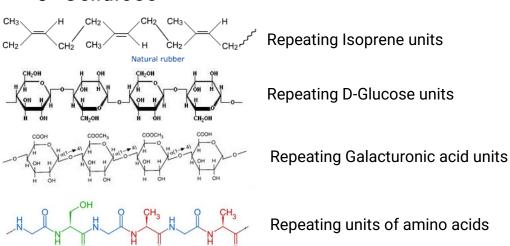
A **POLYMER** is a chemical compound or mixture of compounds consisting of repeating structural units created through a process of polymerization

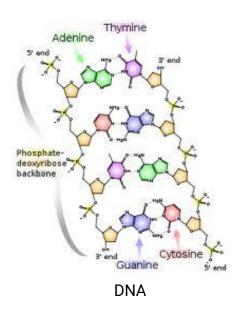
Greek words:

```
πολύς (polus, meaning "many, much")
μέρος (meros, meaning "parts")
```

Refers to a molecule whose structure is composed of **multiple repeating units**

→ High relative molecular mass and associated properties





Origin of polymers

- NATURAL POLYMERS also exist in nature
 - Latex / natural rubber
 - Starch
 - Cellulose

- Pectine
- o Silk / Wool
- o *DNA,...*

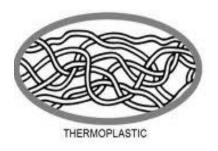
Most pharmaceutical applications are with SYNTHETIC POLYMERS

Examples of synthetic polymers

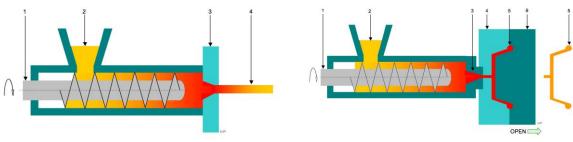
A small fraction are **INORGANIC POLYMERS**

Example: Siloxanes (PolyDiMethylSiloxanes; PDMS) (SILICONE)

However, most of the polymers are **ORGANIC POLYMERS**


Examples: polyethylene (PE), polypropylene (PP), ethylene vinyl acetate (EVA), polystyrene (PS), Isobutylene Isoprene Rubber (IIR rubber), nylon 6, nylon 6,6,...

THERMOPLASTIC

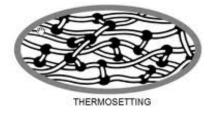

Polymers that soften when heated and become firm again when cooled Examples: PS, LDPE, HDPE, PP, EVA, PTFE, PC,...

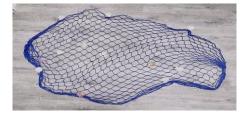
"Entangled" polymer chains

Giving the **final form to a container/component** is based on these principles:

Extrusion

Injection Molding





THERMOSET

Polymers that soften when heated and molded subsequently BUT decompose when reheated (i.e. cannot be reformed after cooling)

Examples: Fenol formaldehyde resins, epoxy resins

Crosslinked polymer chains

Thermoset polymers are **typically "cross linked"** (irreversible chemical bonds formed during **curing** process)

Bakelite

ELASTOMER

Material with low degree of irreversible chemical cross-linking

Examples: rubbers and silicones

THERMOPLASTIC ELASTOMER (TPE)

Thermoplastic materials with elastomeric, rubbery-elastic properties generated by physical cross-linking points

TPE materials can be melted down again and thermoplastic processing is possible

Examples: styrene block copolymers (TPE-S: SBS, SEBS), polyolefin mixtures (TPE-O), thermoplastic polyurethanes (TPE-U), thermoplastic co-polyesters (TPE-E or TPC) and thermoplastic polyamides (TPE-A)

OVERVIEW

- 1. Definition and classification
- 2. Types of polymers
- 3. Properties of polymers
- 4. On the origin of extractables species

Organization of subunits

HOMOPOLYMER built from a sequence of <u>identical monomers</u>

$$\begin{pmatrix}
H & H \\
-C & C
\end{pmatrix}
\qquad
\begin{bmatrix}
H & H \\
-C & C
\end{bmatrix}$$

$$H & CI$$

COPOLYMER built from a sequence of <u>two or more different monomers</u>

Random copolymer

A-B-A-A-B-B-B-A-B-A-A-A-B

Example: Poly EVA

CH₂ CH₂ CH₂ CH₂ H

ethylene vinylacetate

Regular copolymer

A-B-A-B-A-B-A-B-A-B-A

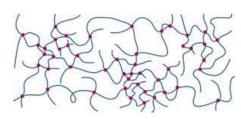
Example: PET

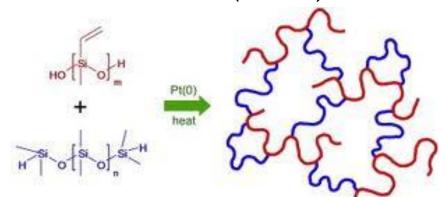
terephthalate ethylene

Block copolymer A-A-B-B-B-B-B-B-B-A-A

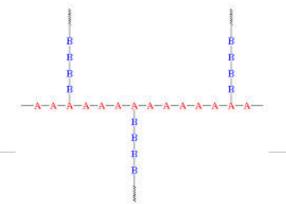
Example: SIS elastomer

$$\cdot - \left(\begin{matrix} c_1 \\ c_2 \end{matrix} - \begin{matrix} c_1 \\ c_2 \end{matrix} \right) \left(\begin{matrix} c_1 \\ c_2 \end{matrix} - \begin{matrix} c_2 \\ c_3 \end{matrix} \right) \left(\begin{matrix} c_1 \\ c_2 \end{matrix} - \begin{matrix} c_2 \\ c_3 \end{matrix} \right) \left(\begin{matrix} c_2 \\ c_2 \end{matrix} - \begin{matrix} c_2 \\ c_3 \end{matrix} \right) \left(\begin{matrix} c_2 \\ c_3 \end{matrix} - \begin{matrix} c_3 \\ c_3 \end{matrix} \right) \left(\begin{matrix} c_2 \\ c_3 \end{matrix} - \begin{matrix} c_3 \\ c_3 \end{matrix} \right) \left(\begin{matrix} c_3 \\ c_3 \end{matrix} - \begin{matrix} c_3 \\ c_3 \end{matrix} \right) \left(\begin{matrix} c_3 \\ c_3 \end{matrix} - \begin{matrix} c_3 \\ c$$


styrene isoprene styrene


Examples of copolymers

CROSSLINKED POLYMERS

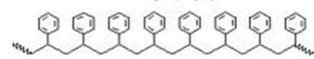

Isobutylene isoprene rubbers

Silicone rubbers (Pt-cured)

GRAFT COPOLYMERS

Polymerisation mechanism

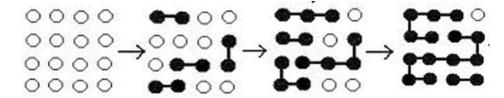
CHAIN GROWTH


Example 1: Cationic polymerisation of "butyl elastomer"

Understanding polymerization of butyl elastomer helps to understand the formation and presence of rubber oligomers

Example 2: Radical polymerisation of polystyrene

etc, leading to polystyrene:



Polymerisation mechanism

STEP GROWTH

Example: Polyaddition, polycondensation of Nylon 6,6

Step-Growth Polymers

(a polyamide)

OVERVIEW

- 1. Definition and classification
- 2. Types of polymers
- 3. Properties of polymers
- 4. On the origin of extractables species

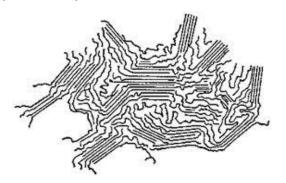
MORPHOLOGY

AMORPHOUS POLYMERS

Because of

- Irregularities in polymer structure
- Nature of the polymer
- Cross-linking (for certain polymers)

No intermolecular bonds (e.g. Hydrogen bonds, Van der Waals forces) will lead to an alignment of the polymer chains


Examples: PS, PVC, SAN, ABS, PMMA, PC, PES

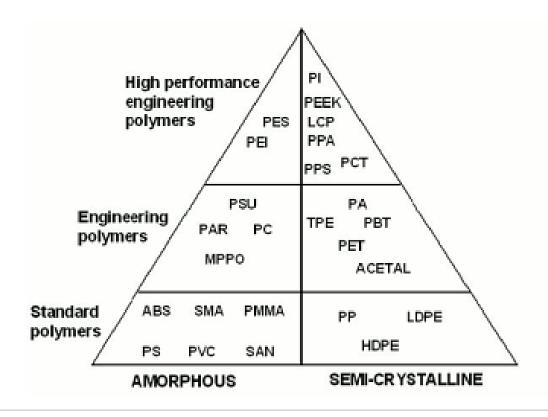
MORPHOLOGY

(SEMI-) CRYSTALLINE POLYMERS

Van der Waals forces (e.g. polyolefins) **Hydrogen bonds** (e.g. polyamide)

Bring "alignment" in chains

Impact of stereochemistry of a polymer on physical properties


Kevlar (polyamide)

Nylon 6,6 (polyamide)

MORPHOLOGY

AMORPHOUS VS. CRYSTALLINE

MORPHOLOGY

AMORPHOUS POLYMERS

Impact of **stereochemistry** of a polymer on physical properties

$$\left\langle
\begin{array}{c|c}
R & R & R & R \\
\hline
\end{array}\right\rangle$$

R R R R R

$$\begin{pmatrix}
R & R & R & R \\
\hline
\begin{pmatrix}
R & R & R & R \\
\hline
\end{pmatrix}$$

Isotactic

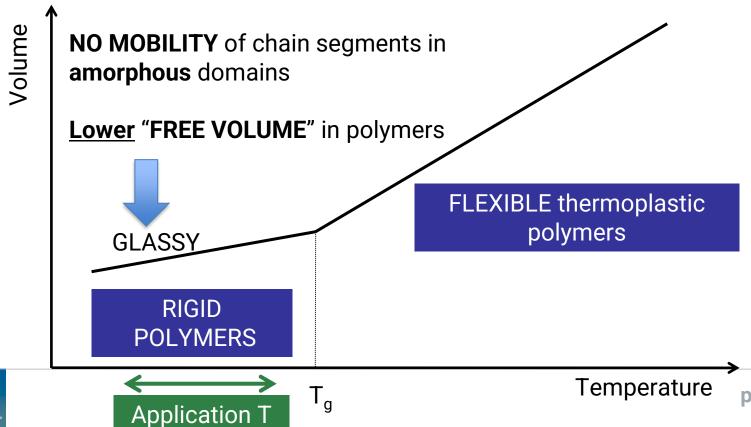
Typically <u>semi-crystalline</u> (e.g. PP via Ziegler-Natta polymerisation)

Syndiotactic

(e.g. syndiotactic PS is semi-crystalline)

Atactic

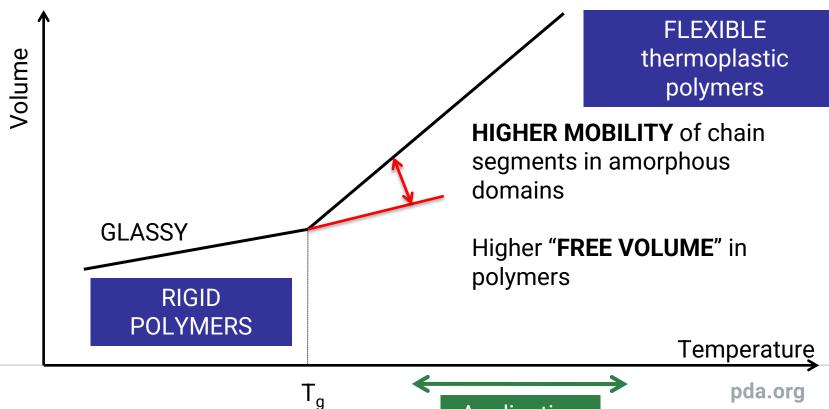
Typically <u>amorphous</u> polymers (e.g. atactic PS is amorphous)



GLASS TRANSITION TEMPERATURE (Tg)

When a polymer goes from a "glassy" state (< Tg) to a "rubber" state (> Tg)

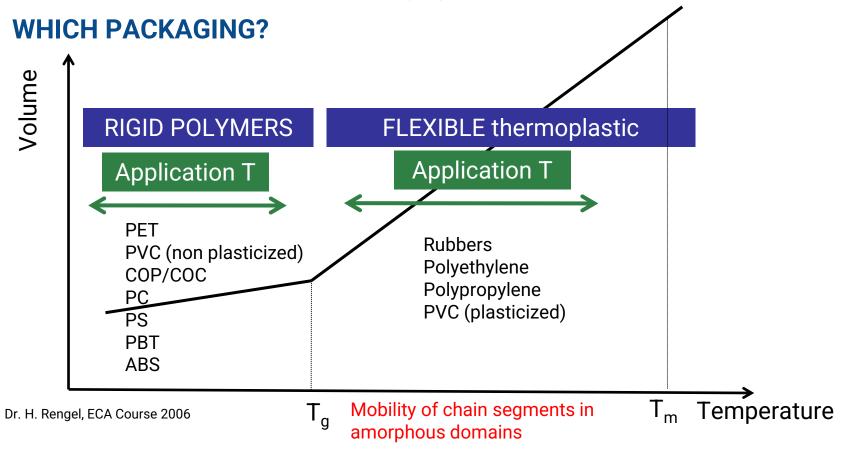
WHAT IS <u>RIGID</u> PACKAGING?



GLASS TRANSITION TEMPERATURE (Tg)

When a polymer goes from a "glassy" state (< Tg) to a "rubber" state (> Tg)

WHAT IS FLEXIBLE PACKAGING?



pda.org **Application**

GLASS TRANSITION TEMPERATURE (Tg)

GLASS TRANSITION TEMPERATURE (Tg)

Examples of T_g for different materials:

PC

LDPE
$$T_g = -125^{\circ}C$$

POM $T_g = -50^{\circ}C$
PP $T_g = -25^{\circ}C$
PBT $T_g = +70^{\circ}C$
PVC $T_g = +81^{\circ}C$ (non plasticized)
ABS $T_a = +110^{\circ}C$

 $T_a = +150^{\circ}C$

The T_g of a material will also have an impact on the migration behavior of a material!

OVERVIEW

- 1. Definition and classification
- 2. Types of polymers
- 3. Properties of polymers
- 4. On the origin of extractables species

WHAT IS IN A POLYMER?

Most Common Sources of Extractables in Polymeric Materials

Intentionally Added

- Pigments / colorants
- Clarifying agents
- Catalysts and Curing Agents
- Fillers
- Anti-oxidants
- Plasticizers
- Photostabilizers
- Slip agents
- Acid scavengers
- ...

NOT Intentionally Added

- Related to the Polymer
 - ➤ Polymer Degradation Compounds
- Related to the Polymerization Process
 - >Solvent residues
 - **≻**Monomers
 - **≻**Catalysts
 - **≻**Oligomers
- · Related to the additives
 - >Additive degradation compounds
- Related to secondary packaging
 - ➤ Glue, Labels, Carton/Paper
- Processing Impurities
 - >Lubricants, surfactants, solvents

• ...

Functionality, performance, protection, processability, cosmetic...

Blowing agents

Pigments / colorants

Antistatic agents

Metal chelators

Adhesives

Clarifying agents

Catalysts and Curing Agents

Antifogging agents

Fillers

Anti-oxidants

Plasticizers

Photostabilizers

Slip agents

Antiozonants

Coupling agents

Lubricants

Acid scavengers

Peroxides / crosslinkers

(blue: coming with some examples)

Anti-Oxidants

<u>Function</u>: assuring protection against thermal and oxidative degradation during processing and during shelf life of polymer

(Sterically Hindered Phenols (Primary AO) & Organic Phosphites/Phosphonates (Secondary AO) are most used)

European Pharmacopoeia lists a.o. the following anti-oxidants:

Plasticizers

Function: gives the plastic flexibility and durability

Plasticizer requirements:

- Low water solubility (low extractibility)
- Stability to heat and light
- Low odor, taste and toxicity

Diethylhexylsebacate

TOTM

Diethylhexylphthalate (DEHP)

$$\begin{array}{c} \text{H}_3\text{C} \\ \text{O} \\ \text{O} \\ \text{CH}_3 \\ \\ \text{Diethylhexyladipate} \end{array}$$

ESBO

Photo Stabilizers

<u>Function</u>: protects the polymer from UV-Degradation (exposure to sunlight)

Tinuvin 328

$$H_3C$$
 CH_3
 H_3C
 CH_3
 C

Slip Agents

<u>Function</u>: reduce the "friction" or "film adherence", important when producing bags from films

Low solubility in e.g. polyolefins will push slip agents to the polymer surface

Remark:

because of their specific properties, slip agents will be widely detected as Leachables!

Acid Scavengers

<u>Function</u>: Protects the polymer from "acid attacks" through conversion of strong acids (high degradation impact) to weak acids (low degradation impact)

Example:
$$Ca(Stearate)_2 + 2HCI \rightarrow CaCl_2 + stearic acid strong acid weak acid$$

E.g. in a Chlorobutyl rubber after curing

Pigments and Colorants

<u>Function</u>: Gives the polymer / rubber the desired color (cosmetic)

Examples: Carbon Black (PNA's!), TiO₂ (white), Fe₂O₃ (red), Pigment Green 07

Remark: beware of the composition of the masterbatch!

Clarifying / Nucleating Agents

<u>Function</u>: by controlling the crystallisation (nucleation) when cooling off polypropylene, PP becomes transparent instead of opaque

$$C_2H_5$$
 C_2H_5
 C_3
 C_3
 C_3
 C_4
 C_5
 C_7
 C_7

Fillers

• Function (e.g. Rubbers):

Fillers give **mechanical strength** (**stiffness**) to a rubber More filler is an advantage for the gliding force for plungers, but makes stopper piercing (coring!) worse

- Aluminum silicate (clay)
- Magnesium silicate (talc)
- Silicates
- Calcium carbonate
- Carbon Black (rubbers)
- ..

Catalysts and Curing Agents

<u>Catalyst Function</u>: Creates the "onset" of the polymerization reaction (i.e. for addition (cationic, anionic, radical) polymerization)

<u>Curing Agent Function</u>: chemical employed in <u>polymer chemistry</u> that produces the toughening or hardening of <u>polymer</u> material by <u>cross-linking</u> of polymer chains via covalent bonds (thermo-setting)

Inorganic Catalysts

(Salts, oxides, complexes...)

- Titanium
- Zirkonium
- Cobalt
- Aluminum
- Iron
- Hafnium
- Platinum
- ...

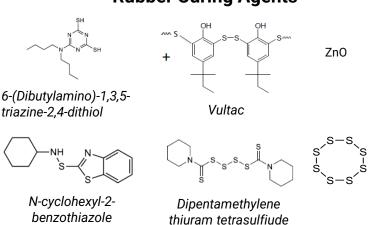
Tacticity modulator

Dicyclopentylsilanediol

Example for Peroxide Curing Silicone

2,4-Dichlorobenzoyl peroxide

Dicumyl peroxide



Catalysts and Curing Agents

<u>Catalyst Function</u>: Creates the "onset" of the polymerization reaction (i.e. for addition (cationic, anionic, radical) polymerization)

<u>Curing Agent Function</u>: chemical employed in <u>polymer chemistry</u> that produces the toughening or hardening of <u>polymer</u> material by <u>cross-linking</u> of polymer chains via covalent bonds (thermo-setting)

Rubber Curing Agents

(DPTS)

Curing Degradation & Reaction Products

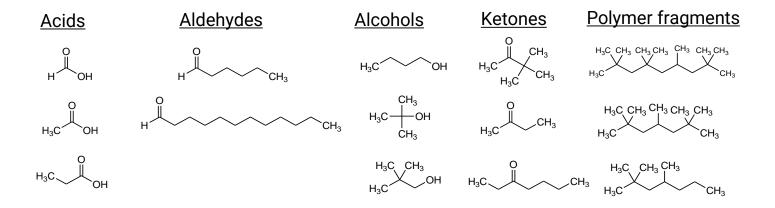
$$(Mercapto)Benzothiazole$$

$$(Mercapto)Benzothiazole$$

$$H_3C$$

$$H_3$$

sulfenamide



Polymer Degradation Compounds

Origin: Oxidative degradation of the polymers

(e.g. when the polymer is not properly stabilized via anti-oxidants;
e.g. "virgin" grades)

Example of polymer degradation compounds from polypropylene:

Solvents and monomers

Examples of Solvents

Cyclohexane

Hexane

H₃C CH₃

DHN

MIBK

IPA

Toluene

Examples of Monomers

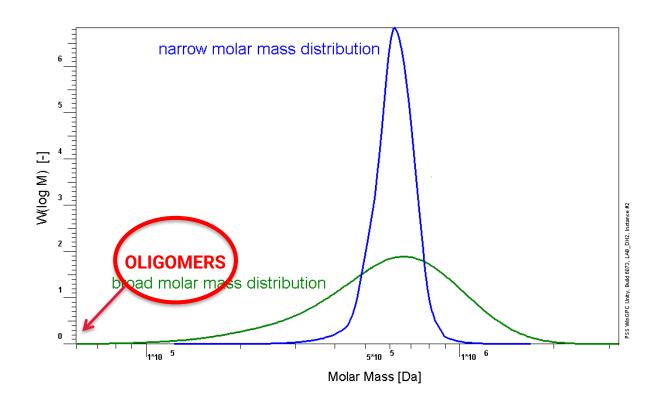
Styrene

Caprolactam

Bisphenol A

$$H_2C$$
 CH_3
 CH_3

Methyl methacrylate


Isoprene

Vinyl Chloride

Oligomers

Polyester adhesive

2. NOT INTENTIONALLY ADDED SUBSTANCES (NIAS)

Oligomers

Nylon 6,6

Butyl Rubber

+ oxidation, hydrolysis and degradation compounds of oligomers

Other typical oligomers from Silicone, PP, PE, adhesives,...

Polymer additive degradation compounds

Example of polymer additive degradation compounds from Irganox 1010:

SMALL degradation compounds

LARGE degradation compounds

Polymer additive degradation compounds

Example of polymer additive degradation compounds from **Irgafos 168**:

Remark: also, many other degradation compounds for Irgafos 168 are known

Secondary packaging for semi-permeable primary packaging

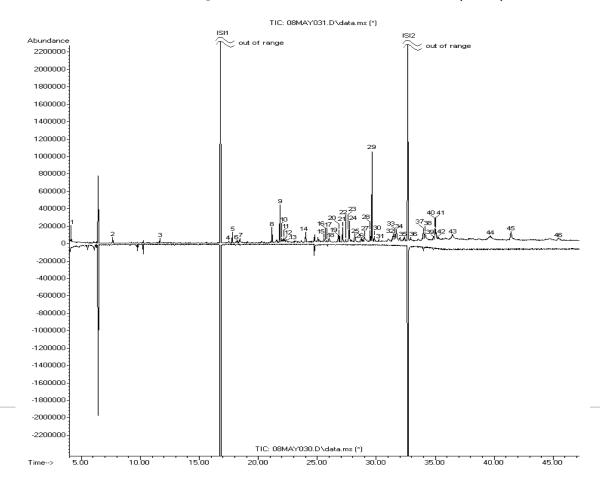
Label

- Adhesive
- Paper
- Ink
- Varnish

Typical extractable compounds:

Curing agents (e.g. Benzophenone, Irgacure 184,...)

Adhesive residues (e.g. Acrylates)


$$H_2C$$
 H_2C
 H_2C
 H_3C
 H_3C

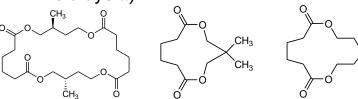
Paper residues (e.g. (dehydro)abietic acids, abietates, see later)

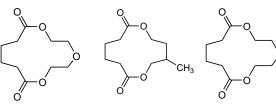
Secondary packaging for semi-permeable primary packaging

Example GC/MS Chromatogram of a Label Extract (IPA)

Secondary packaging for semi-permeable primary packaging

Overwrap/Overpouch/Blister


(to compensate for potential lower barrier properties of the polymer)


- Multilayer system
- Aluminum as barrier layer
- Tie-layers to keep the different layers together

Bislactone Compounds from Tie-layer Residues from other layers (depends largely on selected materials of the multilayer!!)

$$\begin{array}{c|c} + & & \\ & & \\ & & \\ & & \\ \end{array}$$

Secondary packaging for semi-permeable primary packaging

Carton / paper

(may also come from label)

Example structures of abietic acids / abietates (& vanillin)

$$H_3CO$$
 H_3C
 H_3C
 CH_3

$$H_3C$$
 H_3C
 H_3C
 H_3C
 H_3C

$$H_3C$$
 H_3C
 H_3C

H₃C

H₂Ć

Processing impurities

lubricants

detergents

$$O \left\{ O \right\}_{n}^{H}$$

solvent residues

$$H_3C$$
 O CH_3

CONCLUSION

- Know Your materials, it's composition and chemistry
- What you put in is <u>not</u> what will come out
- "A polyethylene is a polyethylene"? NO!
- Some of the compounds are reactive and toxic
- The complex diversity of the universe of extractables requires a <u>broad chemical</u> screening with a <u>combination of techniques</u>
- Knowledge of materials allow the broaden the analytical scope of an E/L study
- Often degradation compounds are <u>difficult to identify</u>
- <u>Database</u> assisted identification is almost a requisite for a successful screening

