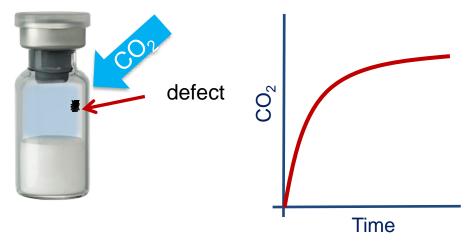

CCI testing throughout the product life-cycle

Using laser-based headspace analysis

What we do in a nutshell

Moisture: 1400nm


pda.org

We look at change in headspace

This can be:

- O₂ going in...or out
- CO₂ going in
- Pressure

Consider initial headspace and what will change when defect occurs

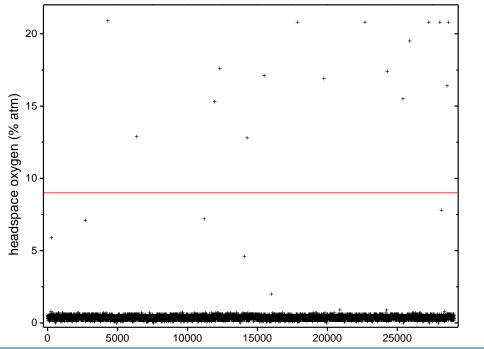
What sort of packages?

- Anything that lets through laser light
- Can be plastic or glass
- Containing solid or liquid product
- Has a headspace...

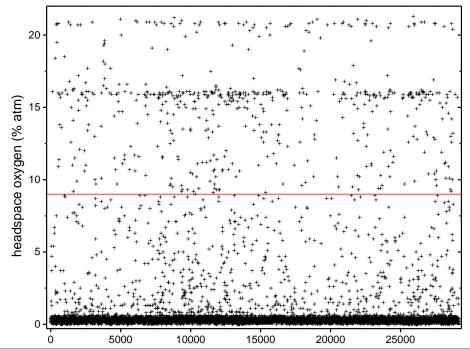
Case study 1 CCIT in an existing process

<u>Product specifications</u> Freeze dried with 0.2 atm nitrogen headspace

<u>Problem</u> QC identified vials that had lost vacuum.


→ Run 100% inspection

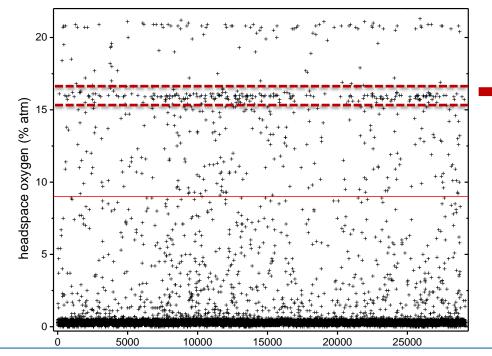
pda.ord



- Total batch size: 29048
- Number rejected: 16
- Reject rate: 0.06%

- Total batch size: 29156
- Number rejected: 568
- Reject rate: 1.95%

	Batch 1	Batch 2	Batch 3	Batch 4	Batch 5	Batch 6
2	0-	· · · · ·		·		un "Micrografieder son 1
ntration (%	5-					
Oxygen Cor	5-					
	0 2000	0 40000 6	0000 80000	100000 1	20000 14000	160000


Results of 6 chronological batches

Not a robust process

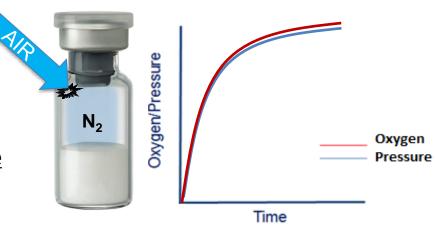
→ When would you discover this?

Headspace specified 0.2 atm N₂

- If 0.8 atm air enters vial = $16\% O_2!$
- Partial leaks stopped by capping

Theoretical background

Gas flow dynamics

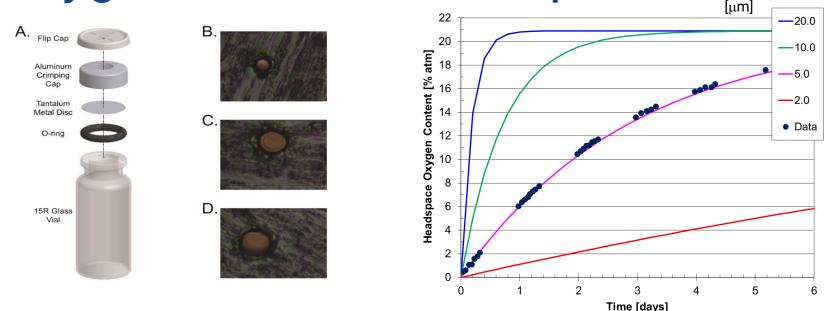

Two ways gas can flow

Effusion

Gas flow driven by a <u>total pressure difference</u> across the defect

Diffusion

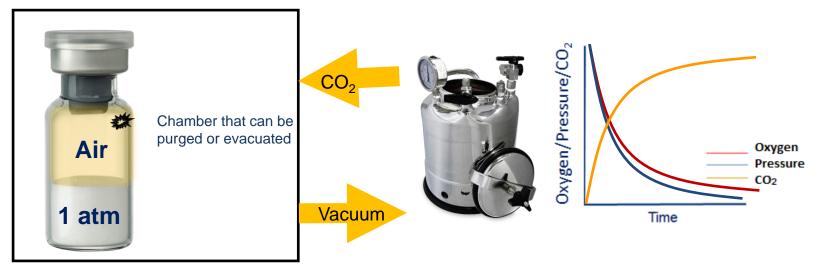
Gas flow driven by a <u>partial pressure difference</u> of that gas across the defect


Understanding gas flow enables development of CCI test methods based on gas ingress

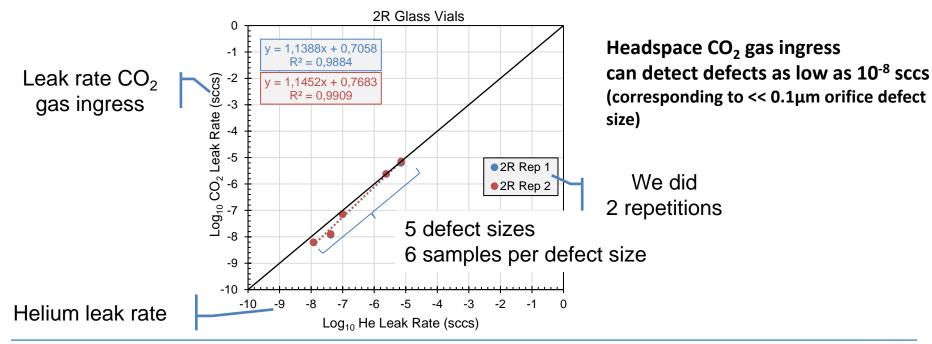
Defect diameter

Oxygen Diffusion Example

Theoretical model enables calculation of method sensitivity


PDA Journal Nov-Dec 2017 issue (71): 'Method Development for CCI Evaluation via Gas Ingress by Using Frequency Modulation Spectroscopy' [K. Victor]. p 429-453.

What if the headspace is unmodified?

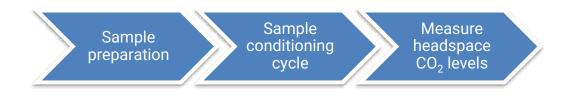


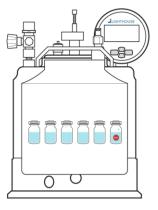
Use the same approach but change the outside environment

You can detect very small leaks

C. Proff, H. Röhl, A. Caudill, J. Nunkaew, K. Victor, "Correlating CCI Leak Rates as Determined by Helium Leak Testing and Laser-Based Headspace Carbon Dioxide Analysis Using Modular Positive Controls", 2023 PDA Parenteral Packaging Conference, 18-19 April 2023.

Case study 2 CCIT method development and validation

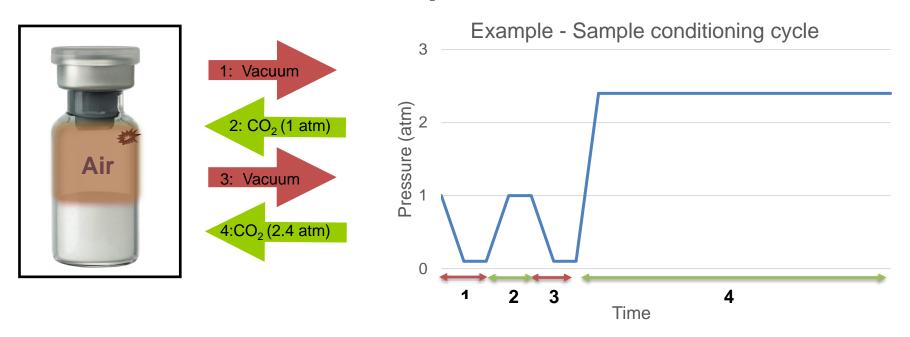



Gas Ingress Testing for CCI

Objective

- Develop an approach similar to blue dye, but with CO₂
- Reliably detect critical leaks:

5µm defect <15 minutes



Method Development

Method Development

Results:

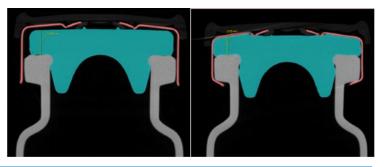
- Presence of product can affect defect detection.
- Defects type, size and location matters!

Defect type	Defect location	Leak de	Leak detected	
		PBS	BSA	
2 µm laser-drilled	-			
	_			
5 µm laser-drilled				
	-			
10 µm laser-drilled				
	-			
Gross defect	_			
Negative control				

Case study 3 CCIT in Package Development

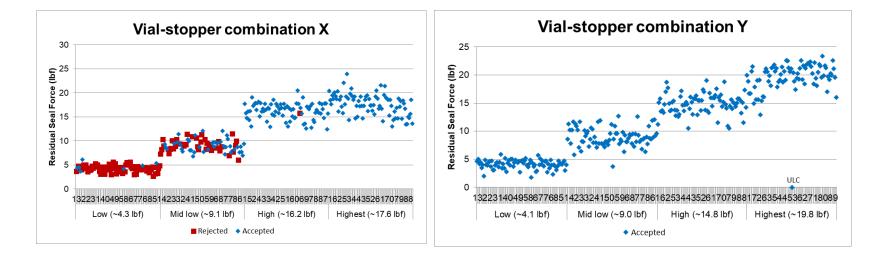
The curious case of temporary leaks

- On dry ice (-80 °C) the initial headspace condenses and creates **underpressure**
- The stopper can lose its elastic properties and closure can be lost
- Cold dense CO₂ from environment fills headspace
- Warming container to room temperature regains stopper elasticity and **reseals** closure
- Creating an overpressure
- Dye ingress cannot detect this!



Residual Seal Force

- In sealing rubber components, the **elastic property** is important.
- An applied stress (sealing force) induces a corresponding strain which creates a contact stress.
- This **stored internal energy** is the Residual Seal Force (RSF).



Components for cold storage

Consider temperature excursions

Table 1: Headspace analysis of samples stored in freezer at -80°C for 48hrs.

Crimp	Vial A	Vial B	Vial C
Low	2000 🗸	2000 🗸	2000 🗸
Medium	2000 🗸	2000 🗸	2000 🗸
High	2000 🗸	2000 🗸	2000 🗸 🛛 💙
Min. temp.	-80°C	-80°C	-80°C

Line qualification:

All the tests were carried out at exactly $-80^{\circ}C$

Small decrease in temperature caused CCI issue.

Table 2: Headspace analysis of samples stored on dry ice for 48hrs.

Crimp	Vial A	Vial B	Vial C
Low	200 🗸	200 🗸	200 🗸
Medium	200 🗸	200 🗸	200 🗸
High	199/1 🗙	199/1 🗙	198/2 🗙 💙
Min. temp.	-94°C	-88°C	-91°C

Summary

Headspace analysis for CCIT

- Analytical measurement
- Non-destructive method
- Permanent and temporary leaks
- Sensitive to all leak sizes
- Quantitatively described by gas flow physics

Generate data for safer drugs

Analytical services

Benchtop instruments

Automated inspection machines

Thank you!

pda.org