Residual Seal Force: A Powerful Vial Seal Quality Test

Carolina González Gaitán, PhD Parenteral Packaging Scientist Genesis Packaging Technologies

CONNECTING

Agenda

- 1. Seal quality tests
- 2. Characterizing a "well-sealed" vial
- 3. Residual Seal Force Concept, basis of testing, methodology, variability considerations, significance and use of RSF test
- 4. Studies Effect of time, effect of FO button, correlation with CCIT
- 5. Takeaways

Seal Quality Tests

• USP <1207.3>:

"Package seal quality tests" are checks used to **characterize and monitor** the **quality and consistency** of a seal parameter related to the package seal, providing some assurance of the package's ability to remain integral

Quality tests ensure that **seal attributes**, **package materials**, **package components** and/or the **assembly process** are consistently kept within established limits, thus further supporting **package integrity**

Seal quality tests are **NOT** leak tests

pda.org

"Well-Sealed" Vial

- Sufficient compression to achieve Leak Rate Cut-off
- An applied force compresses the stopper flange.
 - 1. Cross section of the component(s)
 - 2. Durometer (hardness) of the rubber
 - 3. The percent of compression required to achieve leak rate cut-off

pda.org

"Well-Sealed" Vial

- Sufficient compression to achieve Leak Rate Cut-off
- An applied force compresses the stopper flange.
 - 1. Cross section of the component(s)
 - 2. Durometer (hardness) of the rubber
 - 3. The percent of compression required to achieve leak rate cut-off

Morton, Dana K. "Quantitative and Mechanistic Measurements of Parenteral Vial Container/Closure Integrity. Leakage Quantitation" *PDA J of Pharm Sci and Technol* 1989, 43 (2) 88-97

Residual Seal Force - RSF

- RSF is the strain a compressed elastomeric rubber stopper flange continues to exert on the vial sealing surface after the crimping of an aluminum seal
- RSF is an easy-to-use quantitative method to standardize seal quality regardless of the capping equipment used for crimping
- RSF helps to set up capping parameters to ensure consistency and ease capper validations
- Correlation of RSF with CCITs will provide guidance on setting acceptable ranges

Basis of RSF Testing

- Upon capping, the stopper flange is compressed against the vial land sealing surface
- The stopper flange acts like a "compressed spring"
- The tester apply a force on the cap and stopper
- When the tester force exceeds the closure compression force → RSF

R. Mathaes et al. "The pharmaceutical vial capping process: Container closure systems, capping equipment, regulatory framework, and seal quality tests" *European Journal of Pharmaceutics and Biopharmaceutics* 99 (2016) 54–64

RSF Tester and Methodology

Determining RSF

- Stress-strain curve (green) is a combination of the viscous and elastic response to the stress from tester load
- RSF is determined using the stressstrain curve: the "knee" (yellow)
- An algorithm* is applied, using the 1st (purple) and 2nd (blue) derivatives to accurately identify that knee

* Ludwig J, Nolan P, Davis C, Automated method for determining Instron residual seal force of glass vial/rubber stopper closure systems, *PDA J of Pharm Sci and Technol* 1993, 47 (5) 211-253

Variability Considerations

- Gage R&R
 Custom compressed spring fixture ~2%
- Orientation & centering
- Anvil design
- Button removal

Significance & Use of RSF Method

RSF – Influence of Time

Influence of Elastomer Relaxation

- Elastomer is the base material of the stopper
- Exhibit viscoelastic behavior
- Relaxes over time → RSF decay over time

Morton D., Lordi N. "Residual Seal Force Measurements of Parenteral Vials: I. Methodology" PDA J Pharm Sci and Technol 1998, 42 23-29

Figure 1: RSF and helium leak testing data for vial CCS using a 20 mm butyl elastomer stopper and a 10 mL glass vial fully filled with helium at ambient pressure, tested at ambient temperature through a vacuum chamber [8, 9].

Zeng, Q. "Critical Time- & Temperature- Dependent Container Closure Integrity (CCI) Through the Sealed Drug Product Life Cycle" PDA Parenteral Packaging Conference, Rome, Italy; 2018

Time dependent RSF testing at ambient conditions and modeling fit

Statistical Data Generated of 20 Vials from the RSF Time Course

Time	Mean RSF (N) (n = 20)	Difference in Mean	RSD%
1 minute	62.7	-	9.9
10 minutes	54.0	8.7	11.0
90 minutes	53.1	0.9	7.0
1 day	52.1	1.0	9.6
7 days	51.0	0.9	11.1
21 days	50.5	0.5	10.2

Adapted from: Ovadia, R; Streubel, A; et al. "Quantifying the Vial Capping Process: Residual Seal Force and Container Closure Integrity" PDA J of Phar Sci and Technol, 2019 73 (1) 2-15

- Stress-relaxation of the rubber stopper is time-dependent affecting the sealing force
- Rubber will relax with time
 - RSF decay
 - Greater variability at t < 10 min</p>
 - Greater decrease with higher crimping forces

RSF - Flip-Off Cap Impact

pda.org

Flip-Off Cap Impact

R. Mathaes et al. "Impact of Vial Capping on Residual Seal force and Container Closure Integrity" PDA J Pharm Sci and Tech 2016, 70 12-29

Flip-Off Cap Impact

Without flip-off button

With flip-off button

Low variability Distinctive RSF groups

High variability Difficult to distinguish among RSF groups

R. Mathaes et al. "Impact of Vial Capping on Residual Seal force and Container Closure Integrity" PDA J Pharm Sci and Tech 2016, 70 12-29

RSF – FO Cap

- The flip-off button adds complexity to the system, preventing a clean transition of the force applied by the RSF tester
 - The stress-strain curve is more complex sometimes with 2 minima
 - Higher variability
- More reliable results <u>without</u> the flip-off button \rightarrow Destructive

Correlation with CCIT

Correlation - RSF to Compression

- CCS:
 - 10R Vial
 - 20 mm serum stopper
- Sealing parameters:
 - Four (4) crimping pressures / RSF targets
- Compression, RSF and He leak

Correlation - RSF to He Leak Rate

- Kirsch criterion*: Helium leak rates lower than 6x10⁻⁶ std cc/s have been associated with acceptable microbial challenge results
- Low group have several samples that failed based on the Kirsch Criterion

*Kirsch, L et al. "Pharmaceutical container/closure integrity II: The relationship between microbial ingress and helium leak rates in rubber-stoppered glass vials" *PDA J of Pharm Sci and Technol 51* (5) 195-202 (1997)

Correlation - RSF to HVLD

S. Orosz and D Guazzo, "Leak Detection and Product Risk Assessment" presented at PDA Annual Meeting, Mar 2010, Orlando, FL

Correlation - RSF to HVLD

S. Orosz and D Guazzo, "Leak Detection and Product Risk Assessment" presented at PDA Annual Meeting, Mar 2010, Orlando, FL

Correlation - RSF to HSA

- CCS:
 - 2 ml Vial EU BB, 13 mm Serum Stopper
 - Five (5) vial stopper combinations (A – E)
- Sealing parameters:
 - Three (3) crimping pressures – RSF targets
- Storage:
 - Four (4) storage temperatures

Duncan, D.; Asselta, R. "Correlating Vial Seal Tightness to Container Closure Integrity at Various Storage Temperatures" proceedings of PDA Parenteral Packaging Conference, Frankfurt, Germany; (2015)

Correlation - RSF to HSA

At -80°C:

- Package A: 24% failures at low compression setting
- Package B: 7% failures at low compression setting
- Package C: 0% failures at low compression setting, 4% failures at Nominal compression setting
- Package D: 10% failures at low compression setting
- Package E: 4% failures at low compression setting

Duncan, D.; Asselta, R. "Correlating Vial Seal Tightness to Container Closure Integrity at Various Storage Temperatures" proceedings of PDA Parenteral Packaging Conference, Frankfurt, Germany; (2015)

RSF – CCIT

- Correlation of RSF to CCITs will provide guidance on setting acceptable ranges
- Once optimal RSF range is established, it can be used to standardize seal quality regardless the capping equipment used for crimping

Takeaways

- RSF is a reliable and precise measurement to assess the quality of sealed vial and predict CCI failure
- The stopper compression is a function of RSF
- Correlation of RSF and CCITs provides guidance on setting acceptable ranges, allowing comparison among different capping equipment & sites

Genesis Packaging Technologies

Website: www.gen-techno.com

Email: <u>info@gen-techno.com</u> <u>CGonzalez@gen-techno.com</u>

Phone: +1 800 552 9980 +1 613 294 9203

Thank you!

pda.org