

INTRODUCTION

1

Terms, Definitions, and Concepts

2

Maximum Allowable Leak Limit (MALL)

3

Inherent package integrity

4

Package integrity profile

SCOPE

In-Scope of USP <1207> - Focus of the Course

Sterile pharmaceutical product packaging (SVP, LVP)

Examples:

- ☐ Vials or bottles closed with elastomeric closures or screw-thread caps
- ☐ Form-fill-seal plastic or glass ampules
- □ Syringes or cartridges
- ☐ Flexible bags or pouches.
- □ Packages for some drug/device combination products (e.g., autoinjectors)

Out of Scope of USP <1207> - Methodologies Apply

Packaging systems involved in prep, storage, manufacture

Examples:

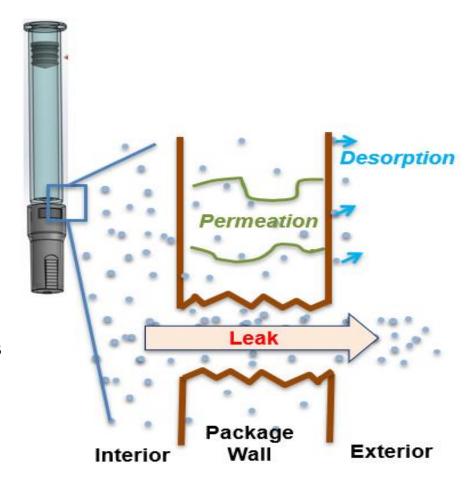
- □ API, intermediate/final bulk
- ☐ Sterile diagnostic products or medical devices
- □ Some packages for sterile drug/device combo products
- Primary packages with porous barrier materials designed to allow air or gas sterilant passage

DEFINITIONS

- Pharmaceutical formulation
 - Principles apply to containers for API, bulk, intermediates
- □ Packaged headspace
 - Air or nonreactive gases
 - At specified water vapor content
 - At ambient or sub-ambient pressures

- Primary package components
 - In direct product contact (or may be)
- □ Secondary package components critical for ensuring package assembly
 - E.g., Aluminum crimp seal on vial/stopper

DEFINITIONS


☐ Leak: A gap or breach in the container capable of permitting the passage of liquid or gas. Otherwise known as "leak path."

☐ Leakage:

- The unintentional entry or escape of matter (solid, liquid or gas) through a breach in a package wall or through a gap between package components.
- The leaking matter itself.

Permeation:

- The passage of fluid (e.g., gas) into, through, and out of a nonporous package wall.
- Permeation (NOT leakage) occurs when only a small fraction of molecules is able to move through a barrier by way of any one hole.

PACKAGE INTEGRITY & MALL

Sterile product package integrity or "container closure integrity" (CCI)

The ability of a package to...

Keep good stuff in, and Keep bad stuff out

"A package with integrity"

Does not mean

the package has passed or is able to pass a Microbial ingress test, or product sterility test

Microbial Ingress is a **PROBABILISTIC EVENT**

Difficult to control, predict, measure

*	FACTORS			
	Leak Path	Size/shape/length/material/blockage		
G	Ingress test parameters	Time/pressure/temp		
	Microorganism	Type/size		
	Liquid tracer	Chemistry/concentration		
	Carrier fluid	Viscosity/surface tension/solvent		
	Visual detection	Human variables/inspection conditions		
	Instrumental detection	Instrument/test parameters		

CONSIDER

IF windows keep out birds, THEN why not detect defective windows by checking homes for birds?

D. Guazzo, RxPax, LLC

Package Integrity

- IS NOT passing microbial ingress or product sterility tests
- IS the absence of a gap/defect that risks product quality
- IS the conformance of the package to the maximum allowable leakage limit (i.e., critical leak)
 - Product quality requirements define MALL

Testing goals may vary during the product life cycle

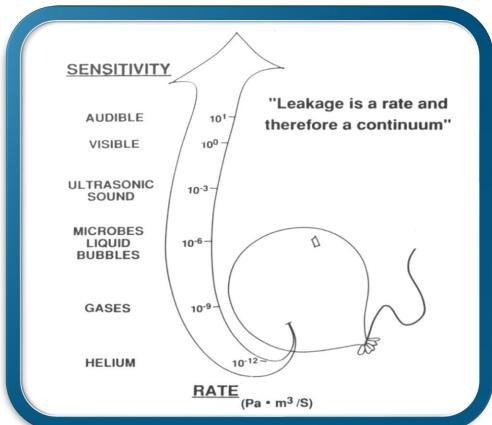
INSTEAD of Checking for Bats.....

- Design and make windows that close well based on meaningful, reliable tests
- Test for absence of defects that <u>could</u> permit birds
- Monitor to ensure control over materials, processes

"A package with integrity" means that Gaps/breaches that COULD risk product quality are absent; i.e., The package meets the MAXIMUM ALLOWABLE LEAKAGE LIMIT (MALL).

What's the difference?

Maximum Allowable Leakage Limit (MALL)


is that smallest gap or leak rate that puts product quality at risk

(sometimes called the 'critical leak')

<u>All</u> physically mated closure systems* leak to some degree

Smallest leaks only allow gas flow

Larger leaks may also allow liquid flow

Largest leaks may also allow microbial ingress

*physico-chemically bonded seals may only allow permeation

Sterile product package integrity (CCI)

Category	Leaks of concern	Product quality risks	
1	Capable of allowing entry of microorganisms	Failure of product sterility	
2	Capable of allowing escape of product dosage form, or entry of external of liquids/solids	Failure of relevant physicochemical quality attributes	
3	Capable of allowing change in gas headspace content. E.g., escape of nitrogen, loss of vacuum, entry of oxygen, water vapor, or air	Failure of relevant physicochemical quality attributes, and/or hindrance of product access by end-user.	

What is the maximum allowable leakage limit (MALL) for categories 1 and 2?

- Prevention of microbial ingress
- Prevention of **product loss** (liquid or solid) or **external contamination** by liquid or solid matter

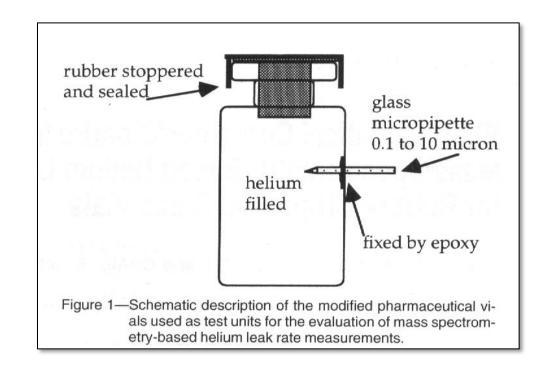
Smallest leak to first allow ingress determination

Lee Kirsch, et al, PDA J Pharm Sci & Technol, Vol. 51, No. 5, 1997

20

Comparison of orifice helium leak rate vs microbial and liquid tracer ingress

☐ Glass micro-pipettes through wall of stoppered glass vial


- Sized via helium mass spec
- 0.1 to 10µm diameter

☐ Microbial challenge by immersion + liquid tracer element

- 10⁸ to 10¹⁰ P. diminuta and E. coli cfu/mL
- Tween 80 additive
- Mg ion tracer for liquid path verification
 - ✓ Detection by atomic absorption

□ Challenge conditions

- Airlock elimination procedure
 - ✓ Water bath immersion 60°C 2hr, then 25°C 1hr
- 24 hr. immersion, ambient pressure

Comparison of orifice helium leak rate vs microbial and liquid tracer ingress

- Microbial ingress risk dropped dramatically at Log 3.8 secs
 - $(< \sim 1 \mu m)$
- Low risk of ingress (< 0.10) at helium leak rate of 6 x 10⁻⁶ mbarL/s

Kirsch, et al, PDA J Pharm Sci & Technol 51, 5, 1997 p. 195 - 202

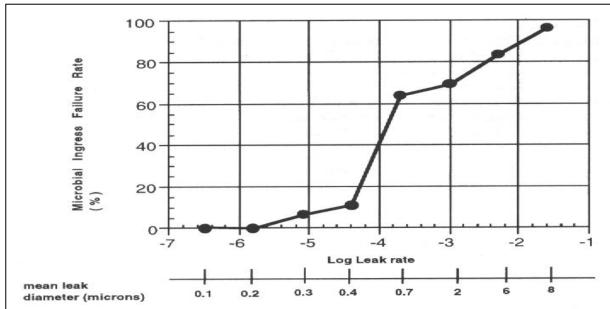
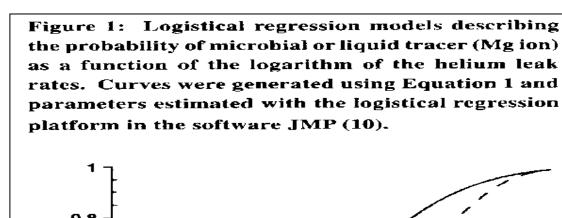
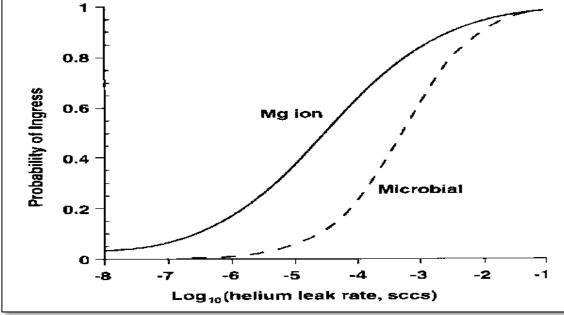


Figure 2—The correlation of microbial failure rate (%) and the mean logarithm of the absolute leak rate and nominal leak diameter for modified SVPs. The absolute leak rate (standard cubic centimeters per second) was determined by mass spectrometry-based helium leak rate detection. Microbial failure was measured by microbial ingress after 24 hour immersion in a bath (37°C) containing 10⁸ to 10¹⁰ P. diminuta and E. coli organisms/mL and a 13 day, 35°C incubation.





Comparison of orifice helium leak rate vs microbial and liquid tracer ingress

- ☐ Microbial ingress <u>requires</u> liquid flow
 - Increased liquid flow equals increased microbial ingress risk
- □ Liquid flow ≠ microbial ingress

Kirsch, PDA J Pharm Sci & Technol, <u>54</u>, 4, 2000 p. 305 – 314

MALL as a function of leak path morphology and test conditions

Study Author	Challenge medium	Challenge microbe	Challenge path	Challenge conditions	Microbial ingress first observed
Kirsch JPDA '97-'99	Liquid	P. diminuta E. coli	Glass micro-pipette through vial wall	Airlock elimination step + 24 hrs ambient	0.3 μm orifice
Burrell JPDA 2000	Liquid	E. Coli	Poly-coated glass micro-tube through stopper	ISO closure reseal: 30 min 22" Hg + 30 min ambient	10 μm ID tube
Morrical JPDA 2007	Liquid	Serratia marcescens	Metal plate micro-hole in stopper	-0.4 bar 1 hr. +0.4 bar 1 hr.	4 μm orifice
Morrical JPDA 2007	Liquid	Serratia marcescens	Copper wire between stopper/vial	-0.4 bar 1 hr. +0.4 bar 1 hr.	20 μm OD wire
Keller J. Appl. Packag. Res. 2006	Aerosol	P. Fragi	Nickel micro-tube in 3mL vial	Varied: -20 kPa to +20 kPa 4 to 37°C	5 μm ID tube

Kirsch reported smallest leak (nominal hole size) that first demonstrated:

- Microbial ingress: 0.2 0.3 μm
- Aqueous liquid passage: 0.1 µm*

*Absolute cut-off was not defined as smaller leaks were not evaluated

- Liquid presence in the leak path was required, but did not guarantee microbial ingress
- Airborne microbial ingress only possible with larger leaks

MALL size of "Real leaks" is undefined

- Real leak paths are <u>not</u> holes, tubes, pipettes
- Natural defects are long, complex, irregular channels
- Defects consist of actual package materials
- Air pockets, debris, product may <u>block</u> leak flow or microbial ingress

Choosing the critical leak size (rate) that will ensure product sterility and prevent product formulation loss is a SCIENCE AND RISK BASED DECISION.

In general, for **nonporous rigid packages** such as

- Parenteral vials, bottles
- Syringes, cartridges
- Form fill seal glass/plastic ampoules
- Drug/Device package systems (e.g., autoinjectors)

Helium leakages rate of $< 6~E^{-6}$ mbarL/s (leakage through an orifice of about 0.1 to 0.3 µm) have a low risk of microbial ingress or liquid product loss.

Adopting this MALL for such product-packages <u>may eliminate</u> the need for microbial ingress or liquid challenge studies as a function of leak size.

Ingress or product loss risk is not as well defined

For other package systems such as Flexible polymeric packages

For leak types/morphologies more complex or lengthy

For products more likely to leak such as cosolvent systems

The MALL is UNIQUE for each product-package A SCIENCE AND RISK BASED DECISION

Determine the risk of microbial ingress or liquid passage as a function of defect size/type.

What is the maximum allowable leakage limit (MALL) for Category 3?

Prevention of **change in gas headspace content** that risks product quality, and/or risks ease of product access. *E.g.*, N_2 escape; vacuum loss; entry of O_2 , H_2O vapor, or air.

The MALL is UNIQUE for each product-package A SCIENCE BASED DECISION Consider

- ✓ Headspace quality requirements: Initial and at expiry
- ✓ Package headspace volume
- ✓ Package permeation
- ✓ Product-package storage, distribution environment

What is the "in-use" maximum allowable leakage limit (MALL) for multiple dose product packages?

- An in-use sub-category of categories 1, 2, 3.
 E.g., Multiple dose vials or cartridges.
- Prevention of product loss or microbial ingress between and during dosage access

The MALL is UNIQUE for each product-package. A SCIENCE AND RISK BASED DECISION Determine

- ✓ Attempts of product access quantity and mode
- ✓ Risk of microbial ingress and/or product loss

MALL -Product-Package Specific

The MALL is based on product quality requirements

- Prevention of microbial ingress to ensure product sterility.
- Prevention of product formulation loss and product formulation contamination by external solids/liquids to ensure conformance to relevant physicochemical product quality attributes.
- Prevention of headspace content change to ensure conformance to relevant physicochemical product quality attributes, and to assure product access.

Establishing the MALL is a science-based and often a risk-based decision

Inherent Package Integrity

The leakage rate (or the equivalent leak size) of a <u>well-assembled</u> package using <u>no-defect components</u>.

Best-case leak tightness, given anticipated variables:

- Material composition, dimension, processing, and assembly.
- Final product storage, distribution and use.

Determined during product-package R&D and validation.

Acceptable inherent package integrity conforms to the specific product-package MALL

Integrity Assurance

Pyramid

Container Closure Integrity Paradigm

Sterility Testing

PPQ, Validation, CPV

Flow (Cleaning, materials, people, gowning, maintenance

Measures

Product & Process

Equipment

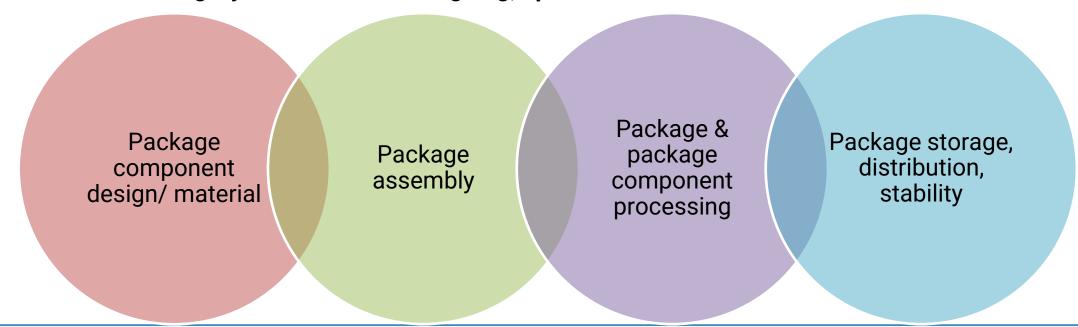
CCI Testing

Characterization/Qualification Studies – CCS Design

Production Assets Fit

Premises

Facility and Supply



Infrastructure

Package Integrity Profile

- Ongoing database Product life-cycle leak and seal quality tests' results
- Offers a risk management tool of package integrity assurance
- Demonstrates integrity as a function of ongoing, operative variations

Summary

01

A package with integrity is one with an absence of gaps/breaches in packages that <u>COULD</u> risk product quality by allowing solid/liquid contaminant ingress, product formulation loss, and in some cases, headspace change. i.e., Meets the Maximum Allowable Leakage Limit.

02

Reporting leak size/rate can be done a variety of ways.

- ✓ Key is to be clear, noting methodology
- ✓ Units of measure should be relevant to the MALL

Summary

03

Develop/validate CC
system having inherent
package integrity that
meets the product MALL
specification.

04

Microbial ingress/liquid tracer tests are probabilistic methods that cannot solely be relied upon for package integrity assurance. - Tests may miss harmful leak paths

05

Use ongoing product package integrity profile data to monitor for and minimize integrity failure risks.

