All about Pre-filled Syringe Systems

From Initial Development to Final Fill Finish

Plunger, Needle Shield, Tip Cap Christa Jansen-Otten

Copenhagen, 25th and 26th April 2024

Customer Impact - Demands on Packaging Components are Increasing

- Particulate reduction/foreign matter
- Concerns regarding extractables/leachables
 - Ultra-clean components needed
 - New ways to deliver medicine
- Functional performance of components
 - High-speed lines
 - Complex devices
- Moisture Vapor Transmission Rate

- Container closure integrity (CCI)
- New manufacturing approach
 - Flexibility
 - Time to market
 - Total cost of ownership (TCO) focused
- Functional performance of components
 - High-speed lines
 - Complex devices

Considerations in Selection of PFS Components

Rubber material

Why Use a Rubber Material?

Sealing properties that maintain container – closure seal integrity over time.

Physically and chemically compatible with different sterilization methods.

Different range of material permeability.

Compatible in long-term contact with drugs.

Wide range of product designs

Main Elastomer Types Used for Parenteral Applications

Natural Rubber (NR) – from Hevea Brasiliensis

Isoprene Rubber (IR) – synthetic equivalent to NR

Styrene-Butadiene-Rubber (SBR)

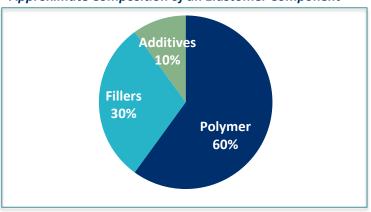
Butadiene Rubber (BR)

Nitrile Rubber (NBR)

Ethylene-Propylene Rubber (EPM/EPDM)

Isobutylene Isoprene Rubber (IIR, Butyl Rubber)

Halogenated Butyl Rubber (XIIR) – Br, Cl


Elastomers Closures General Composition

Additives

can be curing agents, antioxidants, accelerators, activators, protective agents, colorants, plasticizers, acid scavengers, light and heat stabilizers, lubricants, anti-static agents, etc.

Approximate Composition of an Elastomer Component

Fillers

are mainly defining the physical properties

→ "Ask your supplier for potential extractable lists"

Elastomeric Formulations for Pharmaceutical Use - Properties Butyls/Halobutyls

Application: stoppers, plungers, cartridge seals and tip caps

High elasticity

Low potential E&L¹ for good drug compatibility

Low moisture and gas permeation rates

Steam and gamma sterilizable

JP, USP, EP compliant²

Low fragmentation / corning

Optimal penetrability/good resealing properties

¹extractables & leachables ²design dependent

Elastomeric Formulations for Pharmaceutical Use - Properties synthetic Polyisoprene

Application: needle shields/rigid needle shields, tip caps plungers, cartridge seals (laminates)

High elasticity

Low potential E&L¹ for good drug compatibility

Good permeability rates towards moisture and gases (ETO²)

Steam, gamma and EtO² sterilizable

USP, EP compliant

Low fragmentation / corning

Ozone resistance (low cracking), no blooming, no frosting

¹extractables & leachables

²Ethylene oxide

Potential Issues: Needle Shields and Tip Caps

Ozone Cracking

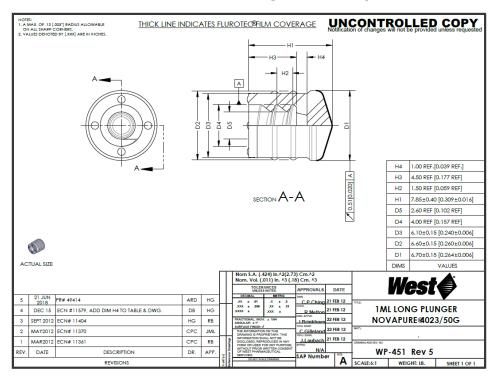
Frosting (Bloom)

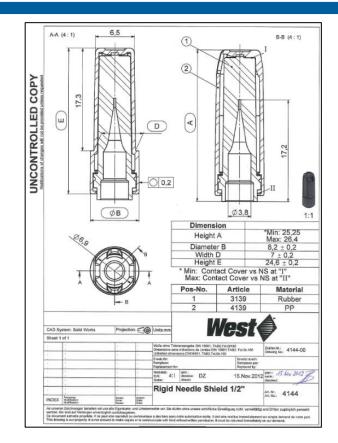
Supporting Documents

Supporting Documents: Example

- Technical drawings
- Formulation Characteristics
- Elastomer Formulation Biocompatibility
- Technical Bulletins and Reports
- Theoretical Material Extractable List
- VeriSure® Extractable Technical Package
- Material Characterization Package
- Regulatory Compliance Bulletins
- Product Specifications
- DMF
- Certificates

FORMULATION CHARACTERISTICS
WEST FORMULATION 4023/50 GRAY





Uncontrolled Drawings: Example

Formulation Documents: Example

Version: Supersed Revision 6 Revision 5

FORMULATION 4023/50 GRAY

*Note: The formulations listed above conform to the specifications and properties represented below as an example.

1. FORMULATION SPECIFICATIONS

The following tests and specifications may be used to confirm the composition of the base elastomeric formulation. The ash and specific gravity specifications listed do not apply to closures with Teflon®, FluroTec® or LyoTec™ coatings.

Test	Units	Specification	Method	
Ash	%	46.4 ± 2.0	West Ash-01	
Specific Gravity	None	1.37 ± 0.04	West SpGrav-02	
Ultraviolet (UV) Spectrum of NaOH Extract	None	Compares to Reference (Attachment 1)	West UV-01	
Infrared (IR) Spectrum of Pyrolysis Products	None	Compares to Reference (Attachment 2)	West IR-01	

The identity of coatings present may be verified using Reflectance Infrared analysis.

Spectrum	Attachment #	Method
Reflectance Infrared Analysis of Base Formulation	Attachment 3	West IR-08
Reflectance Infrared Analysis of FluroTec Surface	Attachment 4	West IR-08
Reflectance Infrared Analysis of B2 Surface	Attachment 5	West IR-08
Reflectance Infrared Analysis of Base Formulation	Attachment 6	West IR-26
Reflectance Infrared Analysis of FluroTec Surface	Attachment 7	West IR-26

2. GENERAL DESCRIPTION

The following is a general description of the composition of the base formulation.

Elastomer Type: Reinforcement System: Curing System: Bromobutyl Inert Mineral Sulfur

West∳

Elastomer Formulation Biocompatibility

4023/50 Grav

Biocompatibility Profile

Background. The purpose of a profile is to provide biocompatibility information on components to enable risk evaluations. Components tested for biological reactivity provide baseline information only, and final drug product packaging/delivery systems should be tested for suitability for use.⁹ Baseline biological reactivity information provided by West is useful for material selection. For the purpose of this profile, base 4023/50 Gray formulation data are presented.

Surface treatments, films, etc., are out of the scope of this document; however, they must be considered, as they also may be in contact with the drug product. Separate documents will be available for films. Additional components included in the packaging/delivery system (e.g., vial, needle shields), process (manufacturing equipment), and combination products (e.g., medical devices, such as West's SmartDose[®] and SelfDoseTM platforms, Daikyo Crystal Zenith[®] Syringes, and administration systems) will be addressed in separate Combination Product Biocompatibility packages if applicable and are out of scope of this elastomer formulation baseline data document.

Biocompatibility Results. The base 4023/50 Gray formulation is compliant with USP <87>, JP 7.03, and USP <88> biocompatibility requirements. Data are summarized below.

Standard	Methods	Results			
USP <87>	Biological Reactivity, In Vitro, MEM Elution Test	Meets USP <87> Compliance Result: Grade 0			
JP 7.03	Cytotoxicity JP 7.03	Meets JP 7.03 Compliance Result: IC ₅₀ >90			
USP <88>	Biological Reactivity, In Vivo, Systemic Injection Test in Saline and Cottonseed Oil	Meets USP <88> Compliance Result: No Mortality			
USP <88>	Biological Reactivity, In Vivo, Intracutaneous Test in Saline and Cottonseed Oil	Meets USP <88> Compliance Result: Grade 0			

Formulation Documents: Example

Compliance Bulletin

Rev. 5

West Item: 4023/50 Grey

TABLE OF CONTENTS

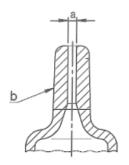
1	INTRODUCTION	2
2	ANIMAL DERIVED MATERIALS	2
3	HEAVY METALS	2
4	NATURAL RUBBER LATEX/DRY NATURAL RUBBER CONTENT	3
5	ADDITIVES OF CONCERN	. 3
6	ROHS	4
7	FOOD REGULATIONS	. 5
8	PROPOSITION 65	. 5
9	ELEMENTAL IMPURITIES	. 5
10	HALAL	6
11	KOSHER	6

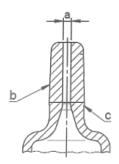
By your side for a healthier world"

530 Herman O. West Drive • Exton, PA 19341 T: 610 594 2900 www.westpharma.com

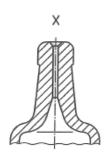
Theoretical Material Extractables List: 4023/50 Gray

Below is a summary of the potential chemical entities that could be extracted from West elastomer formulation 4023/50 Gray based on the materials that are used in the formulation. Since each drug application is unique, it is possible to form new reaction products from the closure or from a combination of the closure and the drug product components.

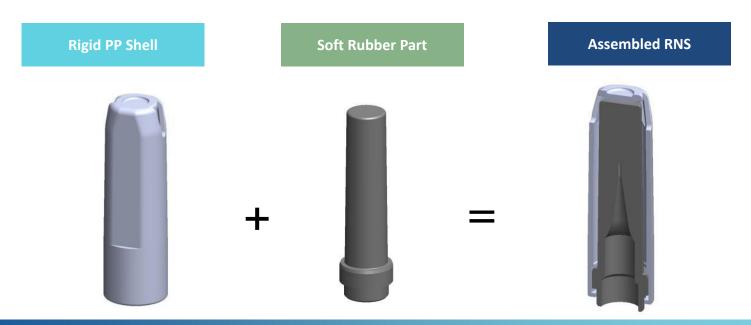

Rigid Needle Shields and Tip Cap



Pre-filled Head Designs ISO 11040-4 require different closure design solutions


Head design of glass barrel with a 6% Luer cone

Head design of glass barrel with a 6% Luer cone for Luer Lock (LL)


Head design of glass barrel with staked needle

West Rigid Needle Shields

Rigid Needle Shields [RNS] are a safe & efficient closuring system for Prefilled Syringes with staked needles

Design examples of Rigid Needle Shields

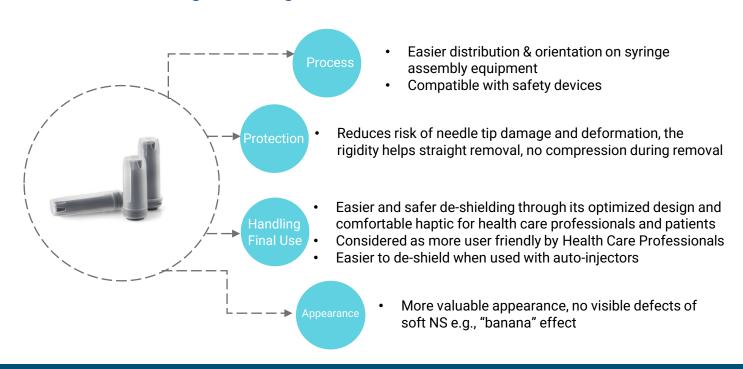
RNS ½" [13 mm]

Needle length used for subcutaneous drug injection (into the tissue layer between the skin and the muscle)

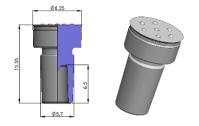
RNS %" [16 mm]

Needle length used for intramuscular drug injection (deep into the muscles)

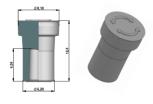
Solution


- Designed for existing assembly machine and filling equipment.
- Fits to ISO Norm 11040-4 glass syringe with staked needle
- Suitable also for polymer (e.g. COP) syringe
- Compatible with safety devices
- High gas permeation rubber formulation combined with sterilization windows of the rigid shell allowing effective sterilization by ethylene oxide or steam

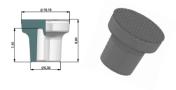
Advantages of Rigid Needle Shields vs Soft Needle Shields



Rigid Needle Shields are the preferred closure for staked needle syringes



Example of various Tip Caps for Luer and Luer Lock Syringe



Tip Cap to be inserted a rigid plastic cap # 3155

Easy Turn Tip Cap # 3131

Mushroom Rip Cap # 3379

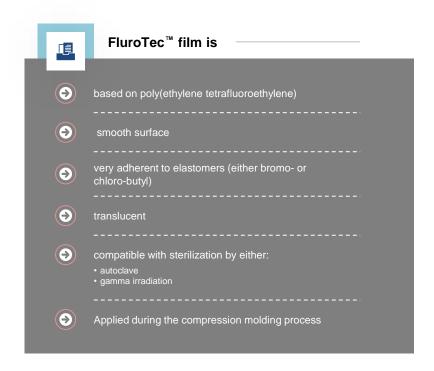
Multiple rubber formulation options (halobutyl and synthetic isoprenes)

Barrier Film & Coatings

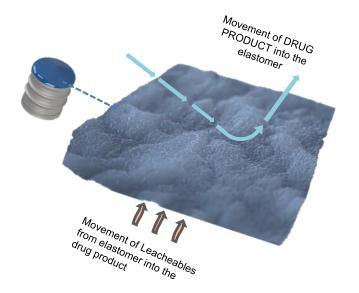
Films and Coating Technologies

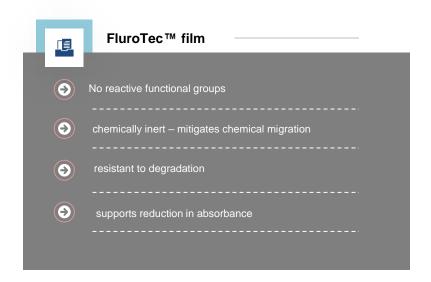
- Film − sheet (e.g., PTFE, ETFE) that is laminated to elastomeric component during the molding process
 - Barrier function, e.g., FluroTec[™] film

- Coating liquid or vapor that is sprayed, tumbled or vapor deposited onto the elastomeric component
 - Lubricity, e.g., B2-Coating
 - Lubricity and barrier function



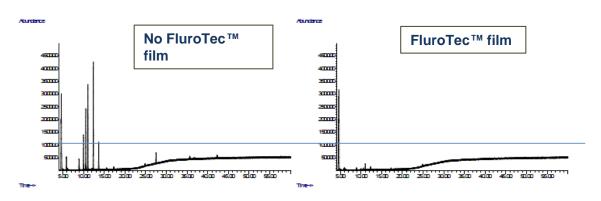
Film properties


Structure of Poly(ethylene tetrafluoroethylene) (ETFE)



Film has a low level of Interaction

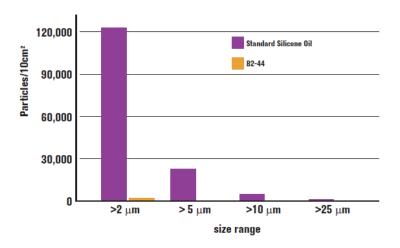
ETFE acting as a barrier reduces transport in two directions

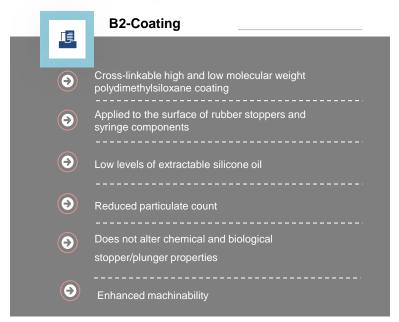


Very Low Surface Energy → Very Low Level of Interaction!

Fluoropolymer film coating Significantly Reduce Leachables

- The drawn blue line indicates an estimated identification threshold of 0.5 μg/unit, which is below the Product Quality Research Institute recommended safety concern threshold for parenteral drug products
- Non-laminated elastomers showed approximately eight volatile organic compound (VOC) peaks estimated to be > 0.5 μg/unit
- Elastomers with FluroTec™ film did not show any peaks > 0.5 μg/unit [blue line]


Most marketed biopharmaceuticals use fluorpolymer-coated component technology (FluroTec® film)



Lubricity coating

B2-coating vs. Traditional Silicone Oil - Sub visible Particles -

Lubricity Coating: Classical Silicone Oil

Polydimethylsiloxane DuPont ™Liveo ™ 360 Medical Fluid* added during washing operation into the washing drum:

- 350 centistokes → USA
- 1000 centistokes → Europe

ADVANTAGES

- Commonly used
- Applied during wash cycle
- Low cost

DISADVANTAGES

- Particles/droplets may be found in drug product
- Silicone level may be inconsistent if process is not validated

^{*} Example of silicone oil used by West

Plungers

Facilitating Life Cycle: Seamless Transition from Vial to Prefilled Syringe format

Multi Dose Vial [MDVs]

Main requirements for Prefillable Syringes Plungers

Delivers a smooth injection profile [break loose & glide forces profile]

Compatibility with the drug product

Compatible with gamma-irradiation and final steam sterilization treatment

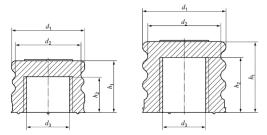
Compatible with glass and plastic (COC/COP) barrels

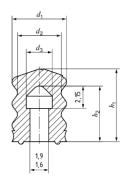
Good compression set properties

Maintains Container closure Integrity

Well performance on fill-finish equipment

Optimized Break Loose & Extrusion Profile


Low Part-to-Part Variability



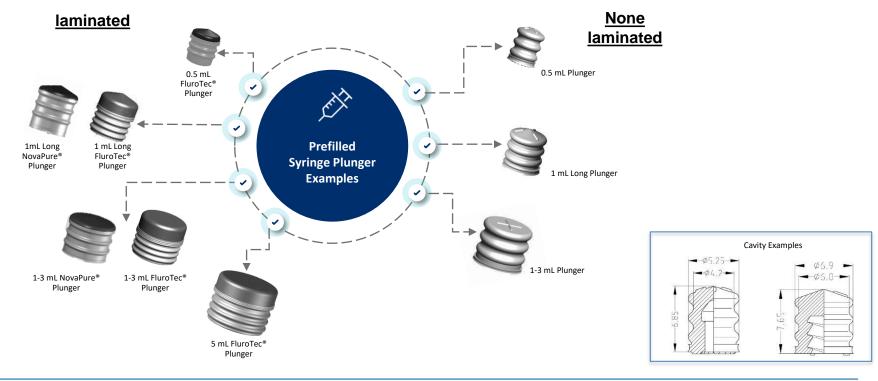
Plunger ISO 11040-5

b) Plunger stopper with thread (PST)

a) Plunger stopper with snap lid (PSL)

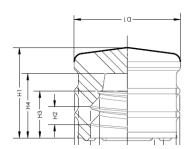
Nominal inner diameter	Nominal volume	Туре	d ₁ a		d ₂ a		d₃ ^a		h ₁ a		h ₂ a		
d2 ^b	ml		nom.	tol.	nom.	tol.	nom.	tol.	nom.	tol.	nom.	tol.	
4,65 ± 0,1	0,5	PSL	5,2 to 5,3		4,1 to 4,2		2,5		6,85 to 7,0		5,3	±0,35	
6,35 ± 0,1	1 (long)		6,8 to 7		5,9 to 6		2,6	±0,2	7,65 to 7,85		4,5		
8,65 ± 0,2	1 to 3		9,05 to 9,25	to ±0,1	±0,1	7,6 to 8	±0,15	4,7		7,7 to 7,85	±0,4	4	
11,85 ± 0,2	5	PST	12,5 to 12,7		10,5 to 11,15	±0,15	5,2 to 5,6		8,5	±0,4	6,0	±0,3	
14,25 ± 0,2	10		15 to 15,3		13,5 to 13,75		7,4 to 7,6	±0,25	8,5 to 10		6 to 6,2		
19,05 ± 0,2	20		19,9 to 20,1	±0,15	18,4 to 18,6		10,7		13,45 to 13,50		7		

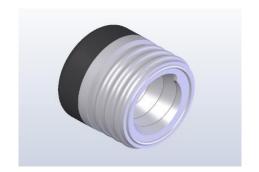
The nominal diameter shall be agreed upon between the manufacturer and the user within the given range.

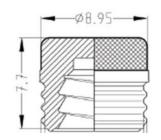

West standard components are compatible with ISO glass barrels

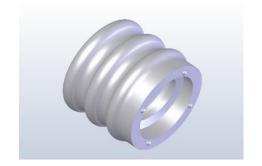
b In accordance with ISO 11040-4.

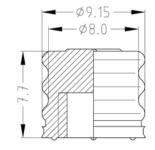
Example of Prefillable Syringe Plungers - Portfolio at West




Examples of Prefilled Syringe plunger designs

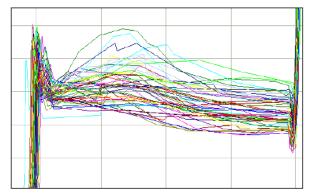

1-3 mL NovaPure® Plunger




1-3 ml FluroTec® Plunger

1-3 ml Plunger





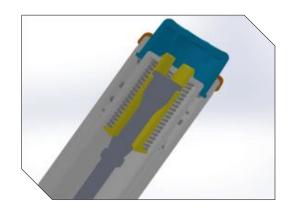
Manual PFS to Auto-injector Challenges

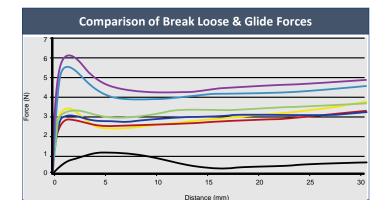
Syringe functionality with high variability

Auto-injector Reliability Risks



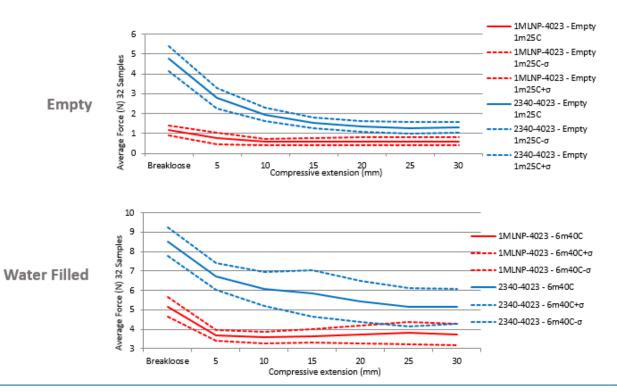
If injection times vary between doses with an autoinjector:


- Patient may stop dose if too long
- > Patient may question quality of the product

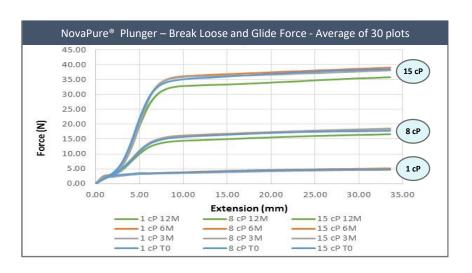


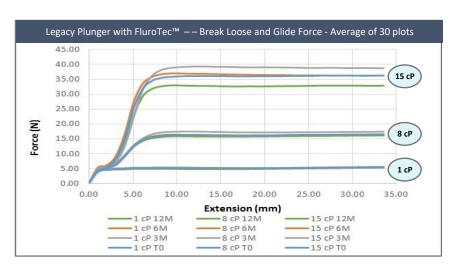
Critical design factors must be considered, especially functional compatibility

Spring falling rate forces (max/min)



Performance: two different laminated 1 ml long Plungers

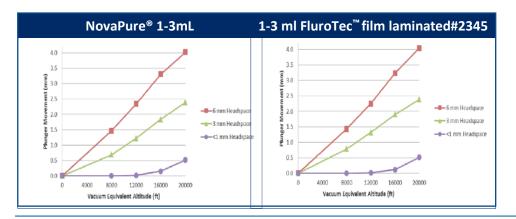




Break-loose and Glide Force - 1 ml Long Plungers - Curves represent averages of 30 plots - Example -

- Break-loose forces are on average 50% lower for NovaPure® plungers at all viscosities and all timepoints
- Less variability over time with NovaPure® plungers especially for high viscosities

Study Extract: TR 2018/191



Evaluation of Plunger Movement During Transit Conditions- Example

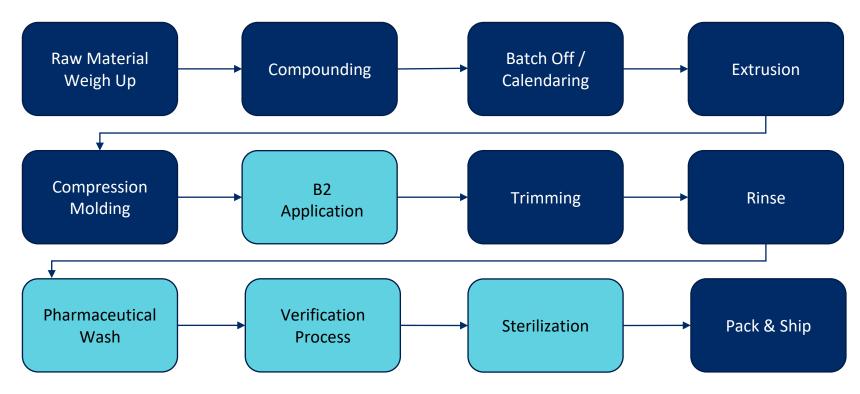
West Plungers Evaluated: 1-3 ml FluroTec™ film laminated plunger and 1-3 mL NovaPure® plunger

- Headspace Values
 - 6 mm (exaggerated vent-tube placement)
 - 3 mm (typical vent-tube placement)
 - <1 mm (typical vacuum placement)</p>

Altitude	Significance
8,000 ft	Pressurized Jet
12,000 ft	Mountain Passes
16,000 ft	Unpressurized Jet
20,000 ft	Highest Cargo Jet Altitude on Record

- Linear correlation between pressure and movement
- Higher headspace volume leads to stronger movement
- NovaPure® and legacy plunger performance is comparable

Processing



Process Flow Map

Value Add Processing Steps

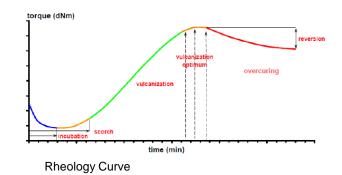
Raw Material Weigh Up

- Formulation control SAP
- Only approved raw materials
- Electronic weigh check against the ingredients list

Compounding (Mixer/Open Mill)

- Distribute ingredients uniformly throughout the polymer matrix
- Use shear to reduce the molecular weight of the polymer and allow the ingredients to disperse

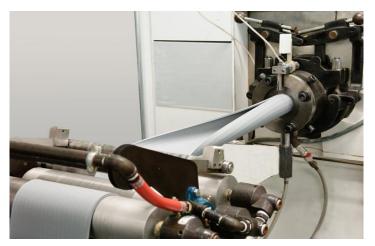
Internal Mixer Open Mill



Mixing Control (Mill Control)

Curing of ISO – standard sample for testing purposes					
specific gravity	per batch				
Shore A of vulcanized sample	per batch				
dispersion of vulcanized sample	per batch				
color of vulcanized sample	per batch				
ash content	every 10 th batch plus 1 st and last				
rheology of the compound	every 5 th batch plus 1 st and last				

Vulcanized Test buttons

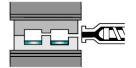

Batch Off or Calendaring

 Intermediate step that allows the compounding facility to hold or distribute rubber stock prior to extrusion

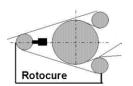
Extrusion (Calendar/Dispersion Enhancement System)

- Aids in reducing undispersed materials
- Form the compounded rubber into panel shape, required for compression molding

Pharmaceutical Rubber Manufacturing

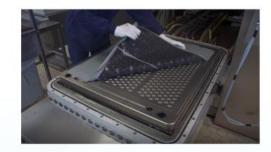

Different 'shapes' need different molding technology:

Compression Molding (CM) e.g. Plungers, stoppers, disk



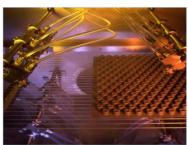
Precision Injection Molding (PIM) e.g Needle shields ...

Rotocure (Sheeting Material) e.g. Lined seals...

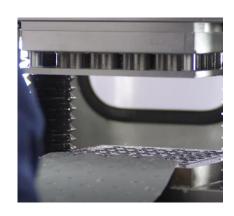


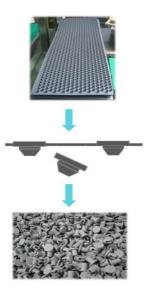
Compression Molding

- Mechanical force creates the shape
- Heat forms crosslinks and imparts final physical properties to the part



B2-Coating Application


Applied to the top and/or bottom of the molded panels



Trimming

• Parts are trimmed from the molded panels

Rinse

- Removes Processing Aids
- Not a pharmaceutical wash

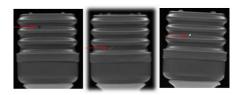
Pharmaceutical Wash Process

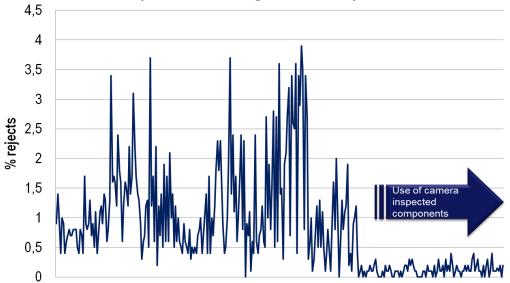
- Pharmaceutical wash process for Ready-to-Sterilize (RS) product
- Application of silicone (if applicable)

Pharmaceutical Wash Process

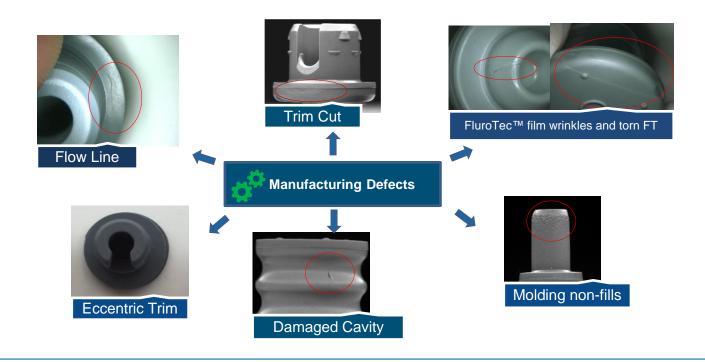
- Validated process according to GMP to demonstrate an endotoxin content reduction by at least 99.9% (3.0 log_{10}).
- Components are unloaded from the washer in a Zone 5 clean room
- All associated process data is filed in Drug Master Files (DMF) with FDA and Health Canada.
- Particulate, bioburden and endotoxin are reported in the quality certificate provided with every batch

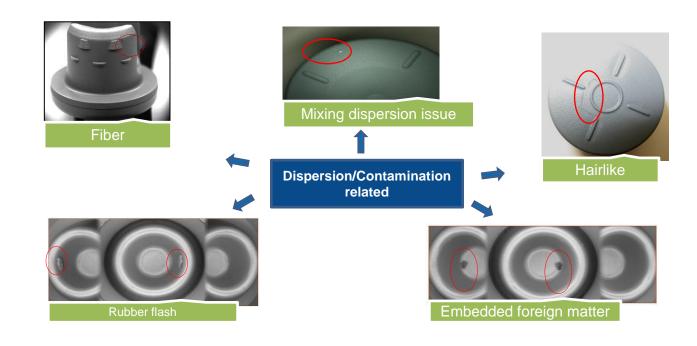
Verification Process


• 100% camera visual inspection for pre-defined defects


End-of-Line Defect Reduction

100% Camera Inspection of rubber components


Case Study: End-of-line drug filled units reject trend



Automated vision inspection verification: defects examples

Automated vision inspection verification: defects examples

Steam sterilization

- Plungers, stoppers and lined seals
- The sterilization process is validated to assure a minimum SAL of 10-6 and in line with
 - ISO 17665-1 and 17665-2
- Steam processed elastomer formulations exhibit less degradation

Gamma sterilization

- Plungers
- The sterilization process is validated to assure a minimum SAL of 10⁻⁶ and in line with
 - ISO 11137-1 and ISO 11137-2
- Gamma processing might impact degradation of the elastomeric formulation

Sterility assurance is reported in the quality certificate coming with every batch

Pack

Product is packaged

Ship

• Prepare for final shipment to the customer

Differentiated Solutions: Increasing Quality & Inspection

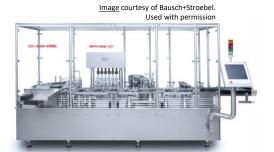
Particulates and Lack of Sterility Cause Most Product Recalls

Visible and Subvisible Particle Specification Example

Attribute	NovaPure® 4023/50 Components		
Particulate > 5 μm < 10 μm	<100.0 particles / 10 cm ²		
Particulate > 10 μm < 25 μm	<60.0 particles / 10 cm ²		
Particulate > 25 μm < 50 μm	<8.0 particles / 10 cm ²		
0.9 Particulate > 50 μm < 100 μm	<1.0 particles / 10 cm ²		
Particulate > 100 μm	<0.2 particles / 10 cm ²		
Fibers > 10 mm	AQL - 0.010	PPM ≤ 10	
Embedded Foreign Matter > 0.2 mm ²	AQL - 0.015	PPM ≤ 50	
Fibers ≥ 2 mm		PPM ≤ 250	
Defects potentially leading to non-sterility	AQL - 0.040	PPM ≤ 250	
Defects impairing processing		PPM ≤ 250	
Fibers ≥ 0.5 mm, < 2.0 mm	AQL - 0.25	PPM ≤ 2500	

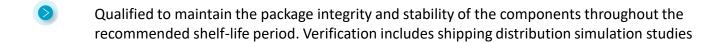
Acceptable Quality Level (AQL) is a statistical measurement of the maximum acceptable number of defective goods in a particular sample size

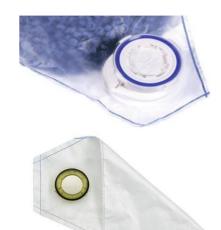
Secondary Packaging



Secondary Packaging - Flexibility for Filling Needs

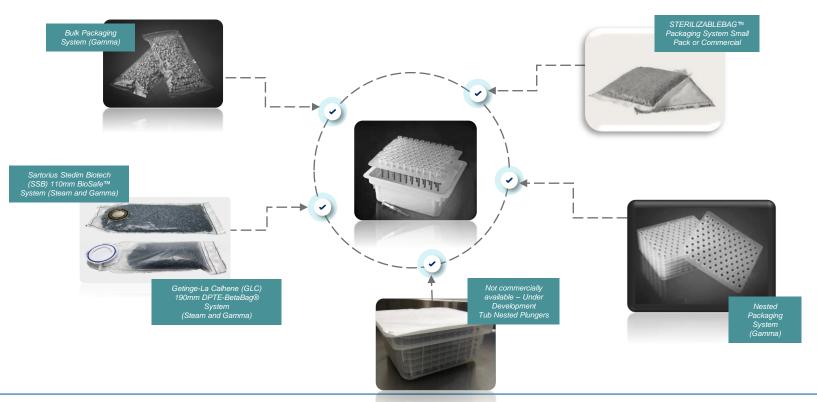
- Filled bags are offered in ready-to-use (RU) quality by either steam or gamma validated processes
- The ported bag packaging system is qualified to maintain the package integrity and stability of the components throughout the recommended shelf-life period. Verification includes shipping distribution simulation studies.

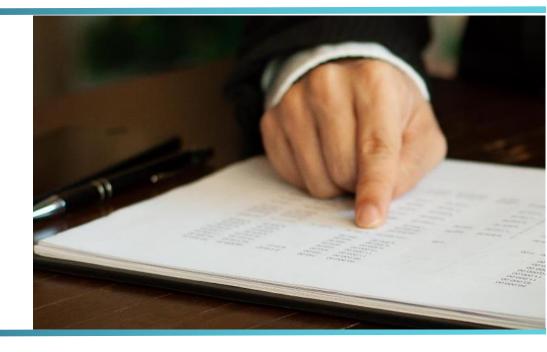




High-quality packaging materials

- Reduction of particle load of primary packaging → tighter specification
- Ease of use
- Pinhole resistant physical stress
- Plastic cartons & plastic pallets





Ready-to-Use Packaging Solutions

Relevant Compendial Chapters and Standards

Global Comparison of Elastomer Chapters

Purpose	Paragraph	USP <381>	Ph Eur 3.2.9	JP 7.03	YBB
Introduction	Definition of Elastomer Types	✓	✓	-	✓
Identification	e.g. IR, ash test	✓	✓	✓	✓
Physico-chemical Tests	Appearance of solution, absorbance, etc	✓	✓	✓	✓
Potential Extractable	Ammonium, Volatile Sulfides	✓	✓	✓	✓
Functionality Tests*	Fragmentation, self-sealing,	✓	✓	-	✓

Introduction to USP <1382> and <382>

<1382> Assessment of Elastomeric Component Functional Suitability in Parenteral Product Packaging/Delivery Systems

- Assist in the functional suitability assessment of elastomeric components as part of packaging / delivery systems
- ISO references
- Sampling plan guidance

<382> Elastomeric Component Functional Suitability in Parenteral Product Packaging/Delivery Systems

• Fitness for intended use functional suitability tests and requirements

Released December 2020 with 5-year implementation grace period

Current <381> versus <382>

From: USP <381>

Elastomeric Closures for Injections

- Functionality Tests
 - · Penetrability
 - Fragmentation
 - Self-Sealing Capacity

Container Closures for Vials and Bottles

To: USP <382>

Elastomeric Component Functional Suitability in Parenteral Product Packaging and Delivery Systems

- Package/Delivery System Integrity Tests
- Needle and Spike Access Functionality Tests
 - Fragmentation
 - Penetration Force
 - Needle Self-Sealing Capacity
 - Spike Retention and Sealability Capacity
- Plunger Functional Suitability Tests
 - Plunger Break Force and Plunger Glide Force
 - Plunger Seal Integrity
- Tip Cap and Needle Shield Functionality Tests

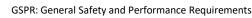
System Closures for Vials, Bottles, Blow Fill Seal Containers, Plastics, Cartridges and Syringes

Medical Device Regulation

Background

- Revision of Regulation 2017/745 on medical devices (MDR)
- Prefilled Syringe is a medical device
- MAA needs a Notified Body Opinion (NBOp)
- Need to fulfill Annex I General Safety and Performance Requirements (GSPRs)
- GSPRs have been expanded significantly
- Knowledge and Experience of the Container Closure System
- Primary Packaging components are also in scope

What does this mean for you


- Need to obtain a NBOp
- Information from suppliers is part of this

MAA: Marketing Authorization Application

NBOp: Notified Bodies Opinion

MAA: Marketing Authorization Applicant

PFS Supportive Documentation

PDA* Technical Report [TR73-2]

- application of Medical Device Regulations, Annex I Requirements (GSPR's) for Staked Needle
- creation of an Addendum TR73-2 to facilitate

Subject Matter Experts

 consists of a group of pharmaceutical companies, glass and rubber component suppliers, consultants (partially with NB background)

TR 73-2 Content

 is following the structure of the submission file to the NB's

Release Date & Access

- February 6th 2024
- PDA Technical Report Portal: TR 73-2

	TABLE OF CONTENTS	
Conten	nts	
1.0 In	troduction	3
1.1	Purpose	
1.2	Scope	:
2.0 G	lossary and Abbreviations	5
2.1	Glossary	
2.2	Abbreviations	
3.0 R	egulatory Background	9
4.0 C	ontent of Submission File to Notified Bodies	9
4.1	Product Description	10
4.2	Device	1
4.3	Device Function	14
4.4	Components	14
4.5	Materials	10
4.6	Packaging	1
4.7	Product Manufacturing	1
4.7	.1 Components and Subassembly Manufacturing	18
4.7	2 Drug Device Combination Manufacturing (Filling, Assembly, and Packaging)	19
4.7	.3 Storage and Transport	19
5.0 A	pplicable GSPRs and Supportive Documents	20
5.1	Supportive Documents Needed to Address GSPRs	20
5.2	Chapter I — Risk Management	31
5.3	Plunger Rod, Rigid Part of the Rigid Needle Shield and Finger Flange Extension/Backstop	3
5.4	Applicability of Requirements regarding Design and Manufacture	39
5.5	Nonapplicable GSPRs and Their Justifications	4
6.0 R	eferences	42

Technical Document Package – best practice

Document includes component technical summaries, quality statements, bulletins and various exclusive documents generated by West in support of Annex I of the European MDR filing

Thank you very much for your attention!

Any Thoughts?
Any Questions?

Christa. Jansen-Otten @westpharma.com

West and the diamond logo, NovaPure, VeriSure, Sterilizablebag, FluroTec, Envision, and Westar are trademarks or registered trademarks of West Pharmaceutical Services, Inc. in the United States and other jurisdictions.

Biosafe is a trademark of Sartorius Stedim Aseptics.

DPTE BetaBag is a trademark of GETINGE LA CALHENE.

All other trademarks appearing in this presentation are the properties of their respective owners.

FluroTec and B2-Coating technologies are licensed from Daikyo Seiko, Ltd.

