pda.org

## Bio-decontamination with Hydrogen Peroxide (H<sub>2</sub>O<sub>2</sub>): Fundamentals







## Isolator technology

- Separation of the process and operators
- Aseptic processing ~ handling of a product while preventing its (microbial) contamination
- Key Functions
  - Maintenance of Aseptic state
    - HEPA filtration
    - Unidirectional airflow
    - Differential pressure (gradient)
    - Transfer systems
    - Physical separation (gloves)
  - Establishment of aseptic state
    - (Cleaning / Disinfection)
    - Bio-decontamination
    - (Sterilization)







### **Bio-decontamination**

"A process that eliminates viable bioburden via use of sporicidal chemical agents" glossary of EU GMP Annex 1

Key applications

- Bioburden management: room bio-decontamination, material transfer airlocks/hatches
- In preparation of an isolator/enclosure for aseptic processing (production)







### Expectations on biodecontamination

- Automated (and integrated)
- Quantifiable and Parametrized
- Reproducible / Robust
- Validated

Requirements are ever increasing propelled by (bio)pharmaceutical industry evolution

- Fast cycles (productivity, cold chain, stability)
- Lower H<sub>2</sub>O<sub>2</sub> residues (no impact on the product or aseptic processes)
- Flexibility / adaptability (various load patterns)
- Sustainability (small footprint, air-reuse)

The Rules Governing Medicinal Products in the European Union Volume 4 EU Guidelines for Good Manufacturing Practice for Medicinal Products for Human and Veterinary Use

#### Annex 1

4.22 i. For isolators

Manufacture of Sterile Medicinal Products

The bio-decontamination process of the interior should be automated, validated and controlled within defined cycle parameters and should include a sporicidal agent in a suitable form (e.g. gaseous or vaporized form). Gloves should be appropriately extended with fingers separated to ensure contact with the agent. Methods used (cleaning and sporicidal bio-decontamination) should render the interior surfaces and critical zone of the isolator free from viable microorganisms.







# Hydrogen peroxide $(H_2O_2)$

- Why do we use H<sub>2</sub>O<sub>2</sub>?
  - Broad non-specific activity against microorganisms
  - Low toxicity, safe to use
  - Active at low temperatures and ambient pressure
  - Good material compatibility
  - Acceptable storage stability
  - Environmentally green solution
- Why vapor form ?
  - Complex, yet highly effective
  - Vapor may be efficiently distributed over the enclosure
  - It allows automated "No touch" process that can be validated
  - Established technology
    -> over 25 years of successful history











### Vapor

- Vapor refers to molecules in a gas phase of a substance that at given temperature exists as a liquid (or a solid)
- Each substance has a limit (maximal) vapor concentration depending on the temperature "Saturation vapor pressure"
- $H_2O_2$  is less volatile than water (approx. 10x) -> evaporated  $H_2O_2$  condenses preferably





### **Bio-decontamination basic principle**









### **Bio-decontamination agents**

- Following species act during bio-decontamination:
  - Air molecules present as gas
  - Water (H<sub>2</sub>O) molecules present as gas (i.e. vapor) or as liquid (i.e. droplets/condensate)
  - H<sub>2</sub>O<sub>2</sub> molecules present as gas (i.e. vapor) or as liquid (i.e. droplets/condensate)
- H<sub>2</sub>O<sub>2</sub>
  - The "active" agent responsible for the bio-decontamination effect
  - Its distribution (homogeneity and concentration) and its form (vapor/liquid) are important
  - It is influenced by humidity and temperature fluctuations as well as by materials in contact
  - Gradually decomposes to water and oxygen
- Water
  - The "influencing" agent it impacts  $H_2O_2$  vapor/liquid equilibrium ( $H_2O_2$  condensation)
  - It swells proteins and influences oxidative radical reactions
- Air
  - The "inert"
  - It may be used to accelerate  $H_2O_2$  distribution by translational movements (active mixing)
  - It slows down the diffusion rate of H<sub>2</sub>O<sub>2</sub>/water molecules





### Humidity and Saturation

• Relative Humidity (%rH) represents the amount of water vapor in the air

- Not "directly" related to killing, but of importance for its effect on relative Saturation
- Relative Saturation (%rS) represents the combined amount of water and H<sub>2</sub>O<sub>2</sub> vapor in air
  - Relative saturation is used to express the remaining vapor capacity of air
  - In other words, it expressed the "willingness" of  $H_2O_2$ -water vapor to condense
- Lower relative humidity ↓ -> higher maximal H<sub>2</sub>O<sub>2</sub> vapor concentration ↑





## Key bio-decontamination parameters

- Key parameters: CONTACT TIME, H<sub>2</sub>O<sub>2</sub> vapor concentration and relative saturation
- Microbial inactivation rate <u>increases</u> (=> better bio-decontamination effect) with
  - Longer contact time, higher  $H_2O_2$  vapor concentration, higher relative saturation





# $H_2O_2$ deposition adsorption + (micro)condensation

- · Deposition appears on all surfaces in contact with hydrogen peroxide/water vapor
- · The deposited amount increases with
  - Increasing relative saturation
  - Increasing H<sub>2</sub>O<sub>2</sub> concentration
  - Decreasing surface temperature



Adsorption (invisible)



# H<sub>2</sub>O<sub>2</sub> distribution in-homogeneities

"H $_2O_2$  bio-decontamination effect is never perfectly homogeneous, and it is not required"

Sources of localized H<sub>2</sub>O<sub>2</sub> effect variations:

- ->  $H_2O_2$  vapor source/injector positioning, means of  $H_2O_2$  distribution, airflow pattern
- -> Isolator shape, equipment and loading pattern/ configuration
- -> Material properties and its cleanliness
- -> Localized variations of temperature (and humidity)
- => Robust technology and proven validation strategy => Successful application



#### Empty chamber

Loaded chamber







### Effect of temperature locally

- Deposition of  $H_2O_2$  on a surface decreases with increasing surface temperature
- Importance of temperature mapping for cycle development



Cold spot





# Simple principal of bio-decontamination



### ...Different technical solutions







### Hot plate evaporation

Example – SIS-700 System





pda.org



## **Evaporation by fogging**

Example – skanfog - micro-nebulization









# H<sub>2</sub>O<sub>2</sub> Fogging

- Step 1 Generation of micro-droplets
- Step 2 Transfer and droplet evaporization
- Step 3 Deposition of H<sub>2</sub>O<sub>2</sub> on surfaces







# $H_2O_2$ vapor conc. + Saturation vs. cycle performance





pda.org



Fogging

VS

- Robust and effective
- "Cold" vaporization
- Allows fast H<sub>2</sub>O<sub>2</sub> injection
- Less H<sub>2</sub>O<sub>2</sub> consumed
- Reduced HEPA filter exposure
- Ventilation not required
- Nozzle positioning
- Flexible and scalable
- Cycle times <1 hour possible

# Hot plate

- Robust and effective
- "Hot" vaporization
- Slower H<sub>2</sub>O<sub>2</sub> injection required
- Higher  $H_2O_2$  consumption
- Full HEPA filter exposure
- Requires ventilation
- Vaporizer positioning
- Less flexibility/scalability
- Cycle times <2 hours possible

While the technology of vapor delivery is different, fundamentals remain the same!

Various technologies may offer benefits depending on the process needs





# Bi-phasic process (limitations?)

- Thanks to Bi-phasic (Vapor-Liquid) behavior of  $H_2O_2$ , the technology is so powerful
- Due to Bi-phasic (Vapor-Liquid) behavior, the technology is complex and difficult to master
- For its potency, many technical solutions exist ... "dry vs wet", "vapor vs fog", etc..
- No standard "kill" conditions are defined



(1) Akers, J.; James P. Agalloco. Overcoming Limitations of Vaporized Hydrogen Peroxide. Pharmaceutical Technology 2013, 37 (9).







### **Process Control Strategy**

- The same general principles apply for all  $H_2O_2$  vapor phase bio-decontamination techniques
- Key Aspects:
  - Suitability of Biological indicator and other tools
  - Equipment design
  - Process expectations, QRM, CCS (deco effect, residual  $H_2O_2$ )
  - Justification of cycle parameters during cycle development and qualification/validation







# H<sub>2</sub>O<sub>2</sub> Cycle Control Strategy

#### Equipment manufacturing

Manufacturing controls and tests FAT -> delivery -> IQ, OQ, SAT

#### **Equipment design**

Fitting customer requirements Quality by Design Calculations/ Simulations Know-how and expertise

#### **Technology development**

Process parameters Control parameters Process robustness Material suitability Component selection



#### **Cycle Development**

Best case efficacy tests Loading pattern definition Chemical indicator mapping Temperature/humidity mapping Worst case position study tests Safety margins Aeration time tests

#### **Process control**

Cycle control parameters Process sensors Process parameter alarms

#### **Performance qualification**

Microbial Qualification (MBQ)

#### **Process Verification**

periodic requalification (MBreQ) In-process Parameter trending ~ Cycle Health







## **Biological indicators (BIs)**

- Tools for evaluation of microbial inactivation processes
- BI consists of homogeneously distributed biocontamination on a metal carrier packed in permeable membrane
- Typical BIs for H<sub>2</sub>O<sub>2</sub> decontamination
  - Spores of Geobacillus stearothermophilus (DSM5934 (=ATCC 7953)
  - BIs with excess of  $10^4$ ,  $10^5$  or  $10^6$  CFU/carrier
  - Carrier material Stainless steel
  - Primary packaging Tyvek®
  - Custom BIs can also be used







"BI is a characterized preparation of a specific microorganism that provides a defined and stable resistance to a specific microbial inactivation process" (USP <55>)





# **Biological Indicators (BIs)**

- Bls are the only tools capable to directly measure microbial inactivation
- Suitable BI is a corner-stone of any qualification/validation strategy for  $H_2O_2$  bio-decontamination applied not only in isolators



#### " The bugs don't lie...

... If you stop using the microorganism as the actual measurement indicator, it starts to be inferential and not a direct measurement."

Rick Friedman (Deputy Director, office of Manufacturing Quality, CDER/FDA) @ ISPE Aseptic conference 2022 regulatory panel "The biological indicator provides a means to directly assess the sterilizing effect of the method in a manner not possible by physical measurements." (USP<1229>)





### BI resistance and variability

- Bls do not have absolute resistance, it is a statistic
- Resistance of BIs is typically expressed as D-value
- D-value = the time needed to reduce viable population on a BI carrier by 90% (i.e. 1 log reduction) when exposed to bio-decontamination "kill" conditions
- For H<sub>2</sub>O<sub>2</sub> standard "kill" conditions do NOT exist
- Resistances given by BI manufacturers in CoAs are informative only -> do not consider labeled D-value as your system D-value
- Importance of model behavior within lot variability Lot should behave homogeneously, minimum of late positives







## Chemical indicators (CIs)

- Qualitative CIs play minimal (yet sometimes very useful) role
  - Immediate and simple readout (color change visible with naked eye)
  - Qualitative indication of H<sub>2</sub>O<sub>2</sub> presence only
  - Weak information with regards to cycle effectiveness
  - Quick check of the decontamination homogeneity/ distribution
  - Can be used for troubleshooting, design optimization purposes







### Enzyme Indicators – emerging quantitative CIs

- Enzyme Indicators (EIs) allow quantitative readout after the cycle
- "Best" CIs on the market
- High price and effort required compared to other CIs
- More information / data can be collected with Els, but Bl's remain the only proof
  - What does the EI data mean?
  - Is the effort of collecting the data worth it?
  - What could be the use of it?
  - Hybrid strategies (BIs + EIs) are being investigated over the industry

#### **Chemical indicator evolution**









### Enzyme indicator technology principle

• Sensing principle:

Degradation of thermostable enzyme by  $H_2O_2$ 

- Readout principle:
- Quantification:
- Interpretation:
- Light generated by chemical reaction catalyzed by the enzyme
- Light measurement inside of a luminometer -> RLU (relative light units)
  - Less Light generated = More enzyme degradation = More  $H_2O_2$  (effect)









### El technology impressions

- El response was showed to relate with Bl inactivation
  - Correlation model was proposed and published in 2017<sup>(1)</sup>
    - 1 location within 1 specific system, 1 specific cycle recipe, 1 specific BI type and lot
  - Since then, a variety of publications were released
- El seems not able to predict the Bl behavior universally
- El brings novel quantitative data relating to distribution of H<sub>2</sub>O<sub>2</sub> and seems capable to augment cycle development studies
- Significant efforts and data are required to switch from informative to interpretable and actionable data

(1) McLeod, N. P.; Clifford, M.; Sutton, J. M. Evaluation of Novel Process Indicators for Rapid Monitoring of Hydrogen Peroxide Decontamination Processes. *PDA journal of pharmaceutical science and technology* **2017**, *71* (5), 393–404. DOI: 10.5731/pdajpst.2016.007435.





# Inactivation rates of Els and Bls may not change in synchrony

• Example: 1 technology, 1 BI lot, 1 system and sample location, variation of cycle lethality





# Sensors: measurement of key in-process parameters

- Temperature
- Humidity
- H<sub>2</sub>O<sub>2</sub> concentration (High and Low)
- (Relative saturation / Dew point)
- There is no harmonized model relating key in-process parameters and  $H_2O_2$  decontamination effect (i.e. BI kill / spore log reduction)
- Trending of in-process parameters allows for very good indication of cycle reproducibility -> Cycle Health











# Bio-decontamination simulations (CFD)

- Computational capabilities are increasing exponentially
- CFD (Computational Fluid Dynamics) can now simulate and predict phenomena such as:
  - Airflow pattern and air-velocity fields (even for non-unidirectional/turbulent flows)
  - Spread of humidity and H<sub>2</sub>O<sub>2</sub> over enclosure, even droplets
- In relation to novel sensorics and quantitative indicator tools (e.g. EIs) the simulations will increase in importance over time
- Can enable further process improvements on sustainability









# Residual H<sub>2</sub>O<sub>2</sub> target

- Definition of Target H<sub>2</sub>O<sub>2</sub> level
  - Typical target is <1ppm (or <0.5ppm) considering operator safety
  - Products may be extremely sensitive to oxidation and thus lower concentrations of 0.1ppm or even lower towards 30ppb are sometimes needed
  - Use spiking studies and trace  $H_2O_2$  exposure tests to determine right  $H_2O_2$  aeration target with regards to product quality
- Optimization of aeration duration
  - Technology selection, novel airflow concepts and catalysts enable extra short cycle times
  - Wrong selection of loading material may ruin any short cycle goal
  - Preliminary testing of H<sub>2</sub>O<sub>2</sub> ingress into various materials will prevent any possible issues
  - Each plastic material is different!



35

pda.org





### 

#### $H_2O_2$ decomposes to harmless water ( $H_2O$ ) and Oxygen ( $O_2$ )

- Degradation of  $\rm H_2O_2$  down to operator safe levels in a single pass through a catalyst
- Can greatly save time and energy requirements of the decontamination process.
- Terminal vs Recirculation catalysts
- Single-pass through catalysts able to degrade high levels of H<sub>2</sub>O<sub>2</sub> are nowadays available









### **Common misconceptions**

- H<sub>2</sub>O<sub>2</sub> decontamination is a gaseous process
  - NO, H<sub>2</sub>O<sub>2</sub> decontamination is two phase liquid-vapor process
- Condensation must be prevented during the cycle
  - NO, quickly reaching saturation and micro-condensation on surfaces makes inactivation quicker (also the surfaces above the dew point temperature become bio-decontaminated, but it typically takes longer)
- Condensation will damage the materials
  - NO, only materials tested to be persistent to  $H_2O_2$  should be used in isolators and therefore this is not a concern (may be a concern for room bio-decontamination)
- Cycles able to get a "total kill" of 6 log BI (i.e. 8-9 log reduction) assure robust process
  - NO, H<sub>2</sub>O<sub>2</sub> bio-decontamination has limited penetrability and therefore only suitable materials (e.g. non-porous) shall be used; surfaces need to be sufficiently clean
- D-values on BI certificates will apply for any  $\rm H_2O_2$  decontamination system
  - NO, D-values will differ system to system, the certified D-value may be used only to estimate lot-to-lot differences of a specific BI product/type, not much more





### Thank you for your attention!

Questions? Feel free to reach out via email.

> Martin Novák Technology Lead Martin.novak@skan.ch



pda.org