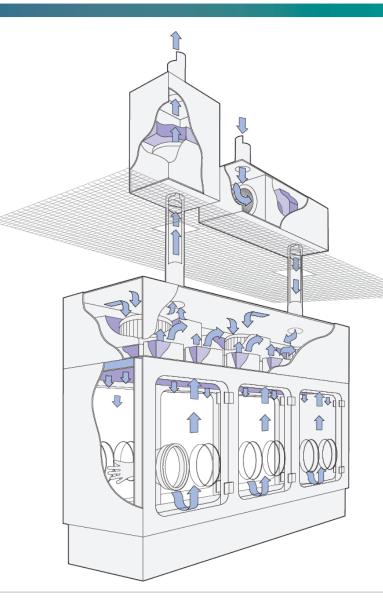
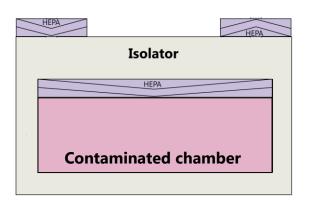
Bio-decontamination with Hydrogen Peroxide (H₂O₂): Fundamentals

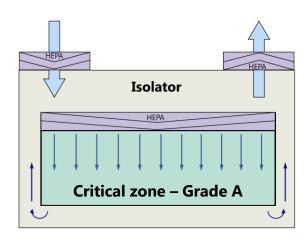


Isolator technology

- Separation of the process and operators
- Aseptic processing ~ handling of a product while preventing its (microbial) contamination
- Key Functions
 - Maintenance of Aseptic state
 - HEPA filtration
 - Unidirectional airflow
 - Differential pressure (gradient)
 - Transfer systems
 - Physical separation (gloves)
 - Establishment of aseptic state
 - (Cleaning / Disinfection)
 - Bio-decontamination
 - (Sterilization)

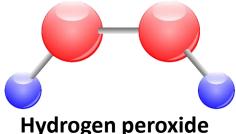


Bio-decontamination


• Process that reduces viable bioburden to acceptable level via use of sporicidal chemical agents

Key applications

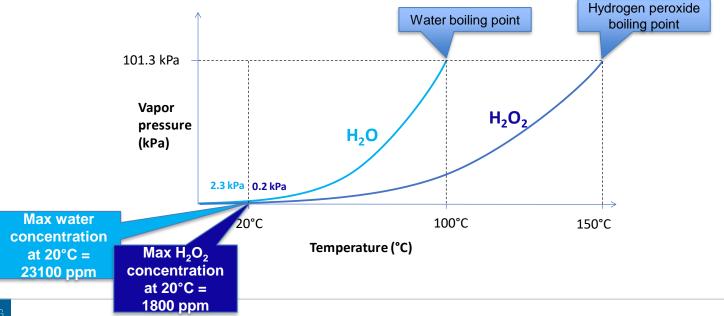
- Bioburden management: room bio-decontamination, material transfer airlocks/hatches
- Preparation of an isolator for aseptic processing (production)



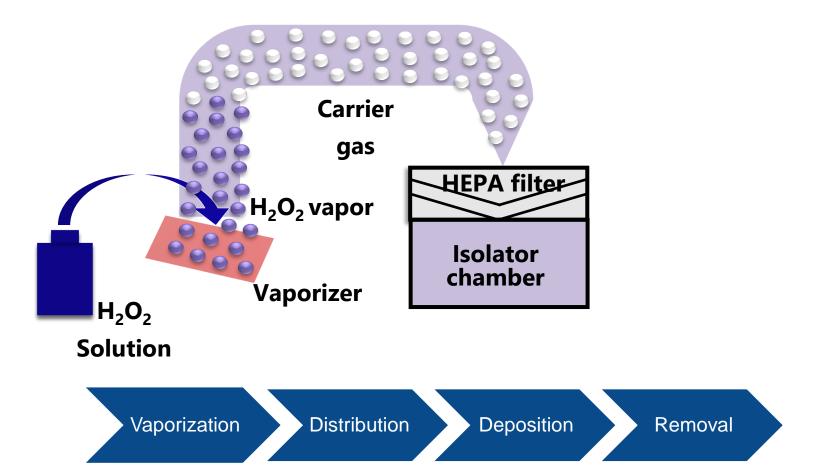
Hydrogen peroxide (H₂O₂)

- Why do we use H_2O_2 ?
 - Broad non-specific activity against microorganisms
 - Low toxicity, safe to use
 - Active at low temperatures and ambient pressure
 - Good material compatibility
 - Acceptable storage stability
 - Environmentally green solution
- Why vapor form ?
 - Complex, yet highly effective
 - Vapor may be efficiently distributed over the enclosure
 - It allows automated "No touch" process that can be validated
 - Established technology
 - -> over 25 years of successful history

BP: 150°C / 302°F

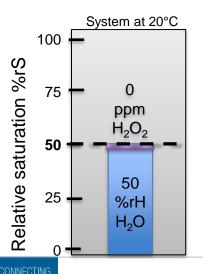

BP: 100°C / 212 °F

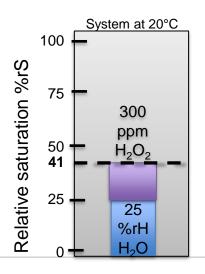
Vapor

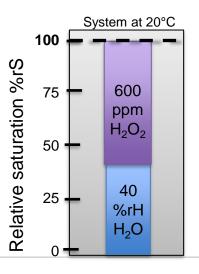

- Vapor refers to molecules in a gas phase of a substance that at given temperature exists as a liquid (or a solid)
- Each substance has a limit (maximal) vapor concentration depending on the temperature "Saturation vapor pressure"
- H_2O_2 is less volatile than water (approx. 10x) -> evaporated H_2O_2 condenses preferably

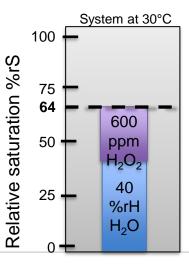
Bio-decontamination basic principle

Bio-decontamination agents

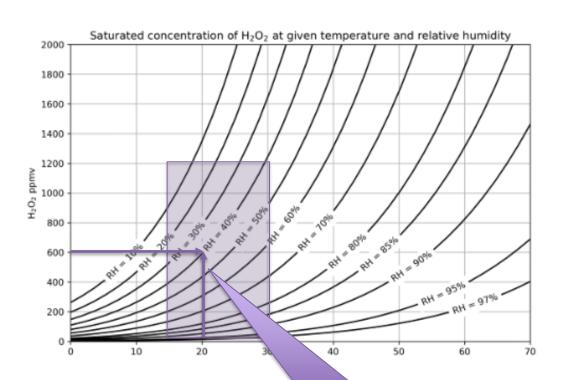

- In the bio-decontaminated chamber, we find the following actors:
 - AIR molecules always present as gas − 78% N₂, 21% O₂, 1% Ar, etc..
 - WATER molecules present as gas (i.e. vapor) or as liquid (i.e. droplets, condensate)
 - $-H_2O_2$ molecules present as gas (i.e. vapor) or as liquid (i.e. droplets, condensate)
- H₂O₂ is the active agent responsible for the bio-decontamination effect thanks to its oxidative properties (especially the oxidative properties of induced radicals such as ·OH)
 - However, its presence and special distribution/concentrations are heavily influenced by water and temperature
- Water is an influencing agent, it swells proteins, induces H₂O₂ condensation, and influences oxidative radical reactions which are the key to inactivate microorganisms
- AIR acts as an inert
 - It may be used to accelerate H_2O_2 distribution by translational movements (active mixing)
 - It slows down the diffusion rate of H_2O_2 /water molecules

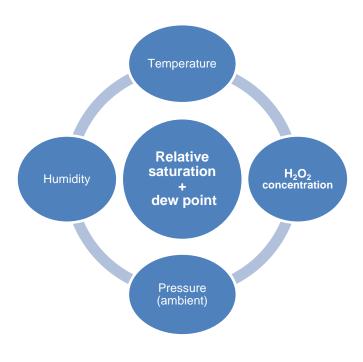





Relative Humidity and Saturation

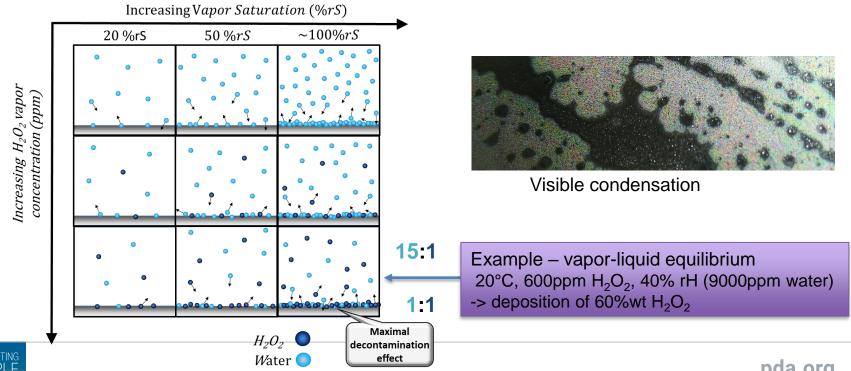
- Relative Humidity (%rH) represents the amount of water vapor in air
 - not so relevant for bio-decontamination
- Relative Saturation (%rS) represents the combined amount of water and H₂O₂ vapor in air
 - Relative saturation is used to express the remaining vapor capacity of air
 - In other words, it expressed the "willingness" of H₂O₂-water vapor to condense
- Higher relative humidity ↑ -> lower maximal H₂O₂ vapor concentration ↓
- Higher temperature ↑ -> higher maximal H₂O₂ vapor concentration ↑





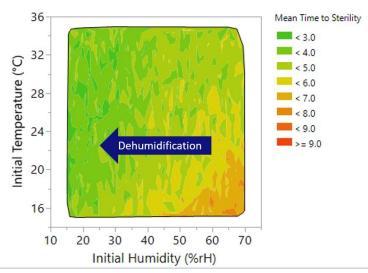
Key bio-decontamination parameters

- Key parameters: CONTACT TIME, H₂O₂ vapor concentration and relative saturation
- Microbial inactivation rate increases (=> better bio-decontamination effect) with
 - Longer contact time, higher H₂O₂ vapor concentration, higher relative saturation



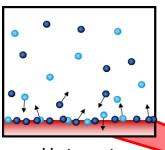
H₂O₂ deposition

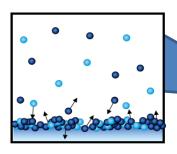
- Adsorption appears on all surfaces in contact with hydrogen peroxide/water vapor
- The adsorbed layer thickness increases with increasing relative saturation
- Visible condensation appears on surfaces that are below the dew point temperature
- The concentration of H₂O₂ in adsorbate/condensate is much higher than in the vapor phase

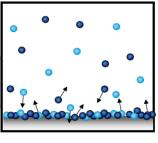


Environmental effects

- Decontamination is typically performed at ambient conditions
 - Humidity
 - Temperature
 - Pressure
- Higher humidity -> Less air capacity for H₂O₂ vapor -> Lower max efficacy
- Lower temperature -> Less air capacity for H₂O₂ vapor -> Lower max efficacy
- Pressure influence insignificant
- WORST CASE -> low temperature + high humidity
- Dehumidification applied to eliminate process variations due to humidity fluctuations



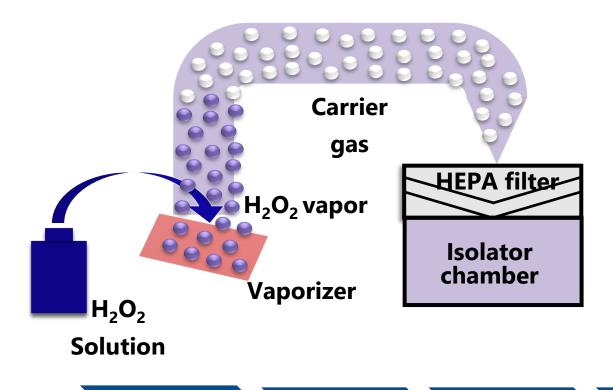



Effect of temperature locally

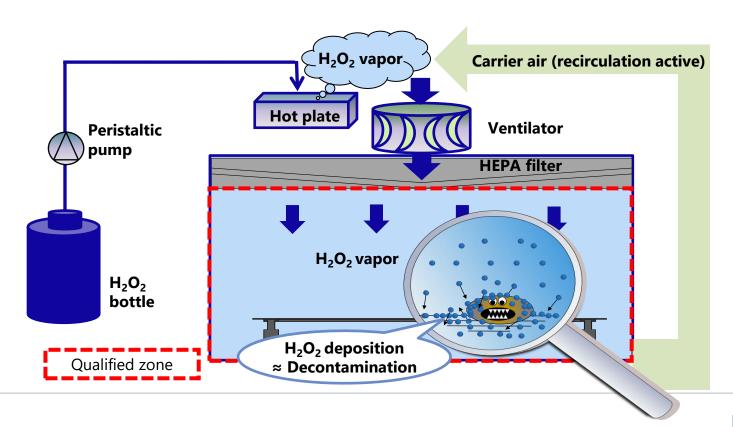
- Deposition of $\mathrm{H_2O_2}$ on a surface decreases with increasing surface temperature
- Importance of temperature mapping for cycle development

Hot spot

Normal temp.

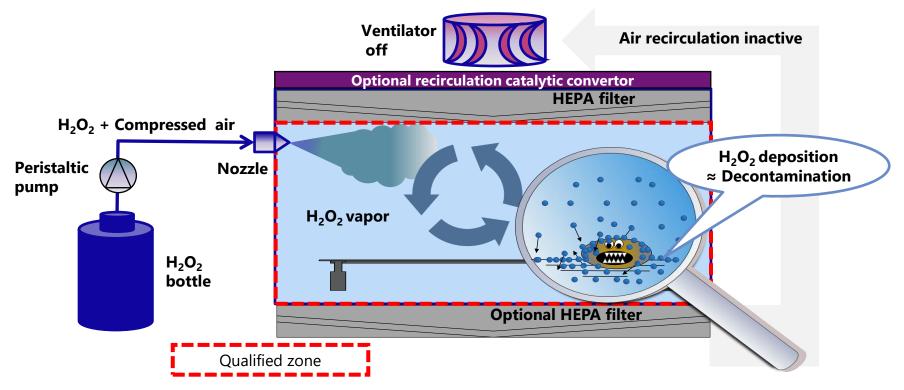

- H_2O_2 molecule
- Water molecule

Basic principle


Vaporization Distribution Deposition Removal

Hot plate evaporation

Example - SIS-700 System



Evaporation by fogging

Example – skanfog - micro-nebulization

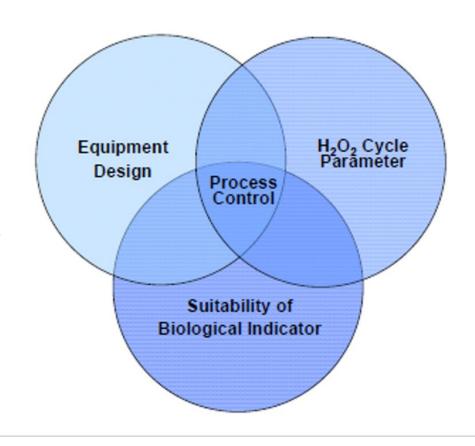
Fogging vs

- Robust and effective
- "Cold" vaporization
- Allows fast H₂O₂ injection
- Less H₂O₂ consumed
- Reduced HEPA filter exposure
- Nozzle positioning flexible
- Flexible and scalable
- Cycle times <1 hour possible

Hot plate

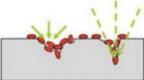
- Robust and effective
- "Hot" vaporization
- Slower H₂O₂ injection required
- Higher H₂O₂ consumption
- Full HEPA filter exposure
- Fixed vaporizer positioning
- Less flexibility/scalability
- Cycle times <2 hours possible

While the technology of vapor delivery is different, fundamentals remain the same!


Both technologies may offer benefits depending on the process needs

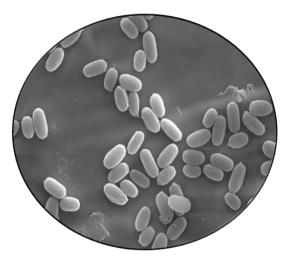
Process control

- The same general principles apply for all H₂O₂ vapor phase bio-decontamination techniques
- Key Factors:
 - Equipment design
 - Justification of cycle parameters during cycle development
 - Suitable Biological indicator and other tools
 - Process expectations, QRM (deco effect, residual H₂O₂)


Equipment design

- Only materials suitable for H₂O₂ bio-decontamination should be used!
 - Material properties (e.g. porosity, affinity to water)
 - Material persistence (e.g. chemical resistance)
 - H₂O₂ absorptivity
 - Catalytic activity
 - TESTING, not assuming

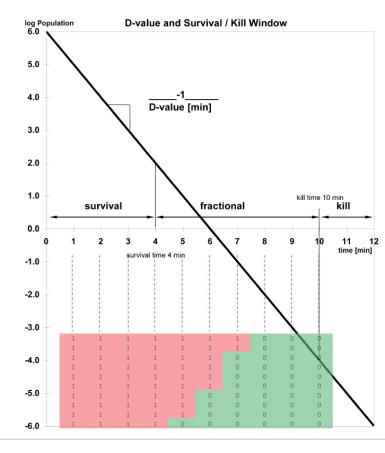
- Good H₂O₂ distribution (no "dead end" cavities, minimize weak spots, active homogenization)
- Criticality of loading pattern (cycle development)
- Keep temperature variation within acceptable level (cycle development)



Biological indicators

- Tools for evaluation of microbial inactivation processes
- BI consists of homogeneously distributed biocontamination on a metal carrier packed in permeable membrane
- BIs developed for H₂O₂ decontamination
 - Spores of Geobacillus Stearothermophilus (highly resistant to H₂O₂ processes)
 - BIs with excess of 10⁴, 10⁵ or 10⁶ CFU/carrier
 - Carrier material Stainless steel
 - Primary packaging Tyvek[®]
 - Custom Bls can also be used

"BI is a characterized preparation of a specific microorganism that provides a defined and stable resistance to a specific microbial inactivation process" (USP <55>)

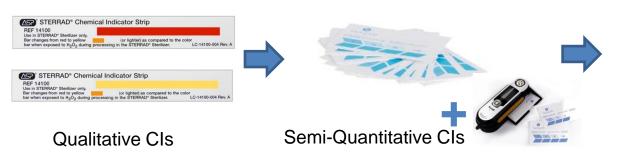

"The biological indicator provides a means to directly assess the sterilizing effect of the method in a manner not possible by physical measurements." (USP<1229>)

BI resistance

- Resistance of BIs is typically expressed as D-value
- D-value is defined as a time needed to reduce viable population on the BI carrier by 90% (i.e. 1 log reduction) when exposed to bio-decontamination "kill" conditions
- For H₂O₂ standard "kill" conditions do NOT exist
- Resistances given by BI manufacturers in CoAs are informative only -> do not consider labeled D-value as your system D-value
- Methods differ significantly among vendors! request information about the method
- Importance of model behavior within lot variability Lot should behave homogeneously, minimum of late positives

Chemical indicators (CIs)

- Qualitative CIs play minimal (yet sometimes very useful) role
 - Immediate and simple readout (color change visible with naked eye)
 - Qualitative indication of H₂O₂ presence only
 - Weak information with regards to cycle effectiveness
 - Quick check of the decontamination homogeneity/ distribution
 - Can be used for troubleshooting, design optimization purposes



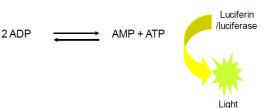
Enzyme Indicators – emerging quantitative CIs

- Enzyme Indicators (EIs) allow quantitative readout after the cycle
- · Highest price and effort required among other CIs
- More information / data can be collected with Els, but Bl's remain the only proof
 - What does the FI data mean?
 - Is the effort of collecting the data worth it?
 - Hybrid strategies (BIs + EIs) are being investigated over the industry

Chemical indicator evolution

Quantitative CIs

Enzyme indicator technology principle


• Sensing principle: Degradation of thermostable enzyme by H₂O₂

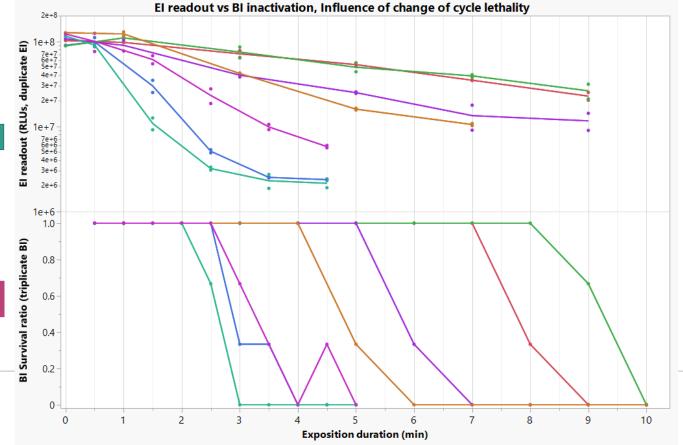
• Readout principle: Light generated during chemical reaction catalyzed by the enzyme

• Quantification: Light measurement inside of a luminometer -> RLU (relative light units)

• Interpretation: Less Light generated = More enzyme degradation = More H_2O_2 (effect)

Considerable effort and cost

Inactivation rates of Els and Bls may not change in synchrony

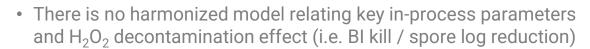

Example: 1 technology, 1 BI lot, 1 system and sample location, variation of cycle lethality

 Changes of cycle lethality result in change of El and Bl inactivation rate

faster BI kill = faster EI inactivation

 El readout (RLU value) corresponding to Bl kill time changes with cycle lethality

1 Equation relating RLUs to log reduction is not applicable





Sensors: measurement of key in-process parameters

- Temperature
- Humidity
- H₂O₂ concentration (High and Low)
- (Relative saturation / Dew point)

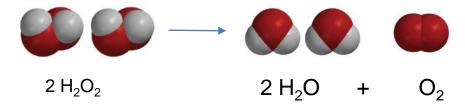
Bio-decontamination expectations

- Integrated and automated process capable to reach all inner surfaces
- Proven robust effectiveness
 - Process must be validated + safety margin for robustness
 - Validation is performed with suitable Biological Indicators (BIs)
 - Total kill of 6 log BIs is typically expected
- Safe for operator and no impact on the processed product
 - After decontamination, the active agent concentration needs to be reduced to required safe level

Hydrogen peroxide (delivered in vapor form) is the most common agent in the industry

Residual H₂O₂ target

- Definition of Target H₂O₂ level
 - Typical target is <1ppm (or <0.5ppm) considering operator safety
 - Products may be extremely sensitive to oxidation and thus lower concentrations of 0.1ppm or even lower towards 30ppb are sometimes needed
 - Use spiking studies and trace H_2O_2 exposure tests to determine right H_2O_2 aeration target with regards to product quality
- · Optimization of aeration duration
 - Technology selection, novel airflow concepts and catalysts enable extra short cycle times
 - Wrong selection of loading material may ruin any short cycle goal
 - Preliminary testing of H₂O₂ ingress into various materials will prevent any possible issues
 - Each plastic material is different!



H₂O₂ catalysts

H₂O₂ decomposes to harmless water (H₂O) and Oxygen (O₂)

- Degradation of H₂O₂ down to operator safe levels in a single pass through a catalyst
- Can greatly save time and energy requirements of the decontamination process.
- Terminal vs Recirculation catalysts
- Single-pass through catalysts able to degrade high levels of H₂O₂ are nowadays available

Common misconceptions

- H₂O₂ decontamination is a gaseous process
 - NO, H₂O₂ decontamination is two phase liquid-vapor process
- Condensation must be prevented during the cycle
 - NO, quickly reaching saturation and micro-condensation on surfaces makes inactivation quicker (also the surfaces above the dew point temperature become bio-decontaminated, but it typically takes longer)
- Condensation will damage the materials
 - NO, only materials tested to be persistent to H_2O_2 should be used in isolators and therefore this is not a concern (may be a concern for room bio-decontamination)
- Cycles able to get a "total kill" of 6 log BI (8-9 log reduction) assure robust process
 - NO, H₂O₂ bio-decontamination has limited penetrability and therefore only suitable materials (e.g. non-porous) shall be used; surfaces need to be sufficiently clean prior to the cycle
- D-values on BI certificates will apply for any H₂O₂ decontamination system
 - NO, D-values will differ system to system, the certified D-value may be used only to
 estimate lot-to-lot differences of a specific BI product/type, not much more
 pda.org

Thank you for your attention!

Questions?

Martin Novák Technology Lead Martin.novak@skan.ch

