All about Pre-filled Syringe Systems From Initial Development to Final Fill Finish Christa Jansen-Otten Bernd Zeiss Gothenburg, October 24th and 25th

Agenda – DAY 2

The "Ready-to Fill" Syringe

Material • Shape • Properties • Siliconization • Impact of different drug • Nest and Tub • Needles and LL • backstops • Rods • Regulatory Guidelines

Plunger Stoppers, Needle Shields, Tip Caps

Materials • Properties • Functionality • Production • Extractables • Regulatory

Manufacturing Aspects in Fill & Finish and Assembly

Bulk versus Nested • Nest Sizes • Rod insertion • Handling of Syringes, Labeling • Glass to Glass Contact

Assembly of Syringes and Administration Devices

Pen Injectors • Safety systems • Autoinjectors • Manual vs Automated

Design Independent Assembly

Hands-on Session 2, Mind map, Lottery

Syringe Components

Customer Impact - Demands on Packaging Components Are Increasing

- Particulate reduction/foreign matter
- Concerns regarding extractables/leachables
 - Ultra-clean components needed
 - New ways to deliver medicine
- Functional performance of components
 - High-speed lines
 - Complex devices
- New manufacturing approach
 - Flexibility
 - Time to Market
 - Total Cost of Ownership (TCO) focused
- Brand differentiation critical

Risks for Container Closures Systems – Potential Risks with High Regulatory Focus

Why Use a Rubber Material?

Sealing properties that maintain container – closure seal integrity over time

Physically and chemically compatible with different sterilization methods

Different range of material permeability

Compatible in long-term contact with drugs

Wide range of product designs

COPYRIGHT © PDA 2018

Elastomer Physical Properties

Definitions Extractable and Leachable

Extractable

Compounds removed from individual components of the packaging system under appropriate solvent and temperature conditions \rightarrow exaggerated conditions

Leachable

Compounds that migrate from the container/closure (c/c) system of the drug or biologic product under normal conditions of use or during stability studies → normal conditions

Potential Sources of Extractable from Elastomeric Closures

• Elastomer

- Oligomers, Calcium Stearate, Antioxidant (BHT etc.), Epoxidized Soybean Oil, Halide ions
- <u>Filler & Pigments</u>
 - Metallic lons
- <u>Cross-linking system</u>
 - Sulphur, Phenolic resins, Metallic Ions i.e. Zn, Peroxides
- Plasticizer (Silicone oil, Wax, Oils)
- <u>Reaction-by products</u>
- <u>Processing aids</u> (Rubber closure, Raw materials)

\rightarrow Ask your supplier for potential extractable lists

Global Comparison of Elastomer Chapters

Purpose	Paragraph	USP <381>	Ph Eur 3.2.9	JP 7.03	YBB
Introduction	Definition of Elastomer Types	\checkmark	\checkmark	—	\checkmark
Identification	e.g. IR, ash test	\checkmark	\checkmark	\checkmark	\checkmark
Physico- chemical Tests	Appearance of solution, absorbance, etc	\checkmark	\checkmark	\checkmark	\checkmark
Potential Extractable	Heavy metals, Zinc, Ammonium, Volatile Sulfides				\checkmark
Functionality Tests	Fragmentation, self- sealing,	\sim	\sim		\sim

Justification for <381> Modernization

"Elastomeric Components Used in Injectable Pharmaceutical Packaging/Delivery Systems"

to address diversity of elastomeric components and applications:

Included, but not limited to, vials, bottles, prefilled syringes (plungers, needle shields, and tip caps), cartridges (plungers and seal liners), injection ports for flexible bags and infusion sets, and plungers for single-use syringes.

Separate physicochemical from functionality testing

Proposed Revisions for <381>

<381> Elastomeric Closures For Injections

<381> Elastomeric Components Used in Injectable Pharmaceutical Packaging Delivery Systems

- Identification
- Biological Activity
- Physico-chemical Tests
- Extractable Metals

<382> Elastomeric Closure Functionality in Injectable Pharmaceutical Packaging Delivery Systems

- Needle and Spike Access Tests
- Plunger Tests
- Tip Cap and Needle Shield Tests

Addressing Extractable Elements in <1381>

Method is verified and elements consistent with ICH Q3D

USP Metal Impurities Initiative 2009 Darrell R. Abernethy, MD, PhD, Chief Science Officer, USP

Specific elements of interest

Antimony, arsenic, cadmium, cobalt, copper, lead, lithium, mercury, nickel, vanadium, zinc Reported in amounts greater than $0.05 \mu g/g$ converted to $\mu g/component$ or < Limit of Detection

Extraction solution

Mixture of acids with stabilizers

Extraction conditions/analysis

70°C 24 hrs/ICP/MS and/or ICP OES

Extraction recovery

Report as found

Limits will depend specific drug product on risk safety/quality

Extract of Relevant ISO Standards

ISO

- Halobutyls:
 - Chlorobutyl
 - Bromobutyl
- Butyl
- Synthetic Polyisoprene
- Dry Natural Rubber [DNR]: Not recommended for new applications

If you need an elastomer for special applications such as oily solutions, please refer to your supplier for special formulation offerings

Elastomeric Formulations for Pharmaceutical Use

Properties Polyisoprene

- Good permeability rates towards moisture and gases (ETO)
- Cleanliness, drug compatibility
- Low fragmentation / coring
- High elasticity
- Optimal penetrability
- Good resealing properties
- Sterilization: ETO, steam, gamma
- Ozone resistance (low cracking)*
- No blooming, no frosting*
- DNR, MBT, Nitrosamine free*

*only valid for Polyisoprene

Properties Butyls/Halobutyls

- Low permeation rates towards moisture and gases
- Cleanliness, drug compatibility
- Low fragmentation / coring
- High elasticity
- Optimal penetrability
- Good resealing properties
- Sterilization: steam, gamma

Potential Issues: Needle Shields and Tip Caps

Ozone Cracking

Frosting (Bloom)

Tip Caps, Needle Shields & Rigid Needle Shields Synthetic Isoprene Elastomer Formulations

<u>Typical modern rubber</u> <u>formulations</u>

- 7028/55 Gray
 Does not crack
- 7025/65 Gray

Not made with natural rubber!

Films and Coating Technologies

Film – sheet (e.g. PTFE, ETFE) that is laminated to elastomeric component during the molding process

- Barrier function, e.g. FluroTec[®] film

Coating – liquid or vapor that is sprayed, tumbled or vapor deposited onto the elastomeric component

- Lubricity, e.g. B2-coating
- Lubricity and barrier function

Fluorpolymer Lamination i.e. FluroTec® Film

Fluorpolymer films

- Applied during the compression molding process
- Barrier from leachables and extractables
 - Minimize interaction between elastomer and drug ingredients
- Superior functional performance
 - Provides lubricity without the need for silicone oil
 - Ensures predictable piston release and travel forces
- Reduces adsorption of drug product

Most marketed biopharmaceuticals use fluorpolymer-coated component technology (FluroTec[®] film)

Fluorpolymer Lamination

- Cross-linkable high molecular weight polydimethylsiloxane coating
- Applied to the surface of rubber stoppers and syringe components
- Low levels of silicone oil extractable
- Reduced particulate count
- Enhanced machinability
- Does not alter chemical and biological stopper/plunger properties

Lubricity Coatings

B2 Coating \rightarrow Sub visible Particles

Lubricity Coating: Classical Silicone Oil

- <u>Polydimethylsiloxane</u> (DC 360 Medical Fluid) added during washing operation into the washing drum
 - 350 centistokes \rightarrow USA
 - 1000 centistokes \rightarrow Europe

Advantages	Disadvantages		
 Commonly used Applied during wash cycle Low cost 	 Particles/droplets may be found in drug product Silicone level may be inconsistent if process is not validated 		

Design Examples of Rigid Needle Shields

RNS ½" [13 mm]

Needle length used for subcutaneous drug injection (into the tissue layer between the skin and the muscle)

RNS 5/8" [16 mm]

Needle length used for intramuscular drug injection (deep into the muscles)

Advantages of Rigid Needle Shields vs Soft Needle Shields

Rigid Needle Shields are the preferred closure for staked needle syringes

Example of Prefilled Syringe - Plunger Portfolio at West

Plungers suitable for DIN/ISO 11040-4 Syringes

Size	Article	Recommended Rubber Formulation (Halobutyl) in combination with FluroTec® Film
0.5 mL	2342	4023/50 grey B2
1 mL Long	2340	4023/50 grey B2 and 4432/50 grey B2
1 mLLong NovaPure [®] Plunger		4023/50 grey B2
1 mL std.	2345	4023/50 grey B2 and 4432/50 grey B2
1-3 mL NovaPure [®] Plunger		4023/50 grey B2
5 mL	2346	4023/50 grey B2
10 mL	Y-2667	4023/50 grey B2

Size	Article	Available Rubber Formulation (Halobutyl)
0.5 mL	2211 and 2247	4023/50 grey and PH 701/50/C black
1 mL long	2212	4023/50 grey and 4432/50 grey and PH 701/50/C black
1 mL std.	2116	4023/50 grey and 4432/50 grey and PH 701/50 C black

Plungers with coating and B2

Plungers without coating (with silicone)

Majority of designs are customized

fluorpolymerfilm

CONNECTING PEOPLE SCIENCE AND REGULATION*

Examples of Plunger Design Intent

1-3 mL FluroTec®

- First rib acts as the primary seal
- Ribs 2-3 are secondary sealing ribs
- Trim edge is at the back of the plunger and is not a sealing feature

1-3 mL NovaPure®

- First rib acts as the primary seal
- Ribs 2-3 are secondary sealing ribs
- Trim edge is at the back of the plunger and is not a sealing feature

PDA® Parenteral Drug Association

Functionality of 1 mL Long laminated Plungers

Optimized Plunger design shows:

- low break loose and gliding forces with very consistent, smooth profiles and minimal variation
- meeting functionality requirement for use with auto-injectors and other medical delivery devices.
- Neither placement nor storage conditions have a determinable influence on the optimized BLG

Pharmaceutical Rubber Manufacturing

Different 'shapes' need different molding technology:

- Compression Molding (CM)
 Plungers, stoppers, disks....
- Precision Injection Molding (PIM) Needle shields ...
- Rotocure (Sheeting Material)
 Lined seals...

COPYRIGHT © PDA 2018

Production of Plungers Compression Molding

Internal Mixer Calandering & Dimensioning **Open Mill** Components are mixed by means of • • The mixture is being homogenized • Puppets" are finally cooled down rotors that are turning more using compactors in rollers Shearing the elastomer ٠ Squeezing out air ٠ Cooling & Cutting Squeezing out air Cooling down Coasted into webs with defined . Incorporating all material • Caution not to start Critical parameters are • thickness and width • specific for the individual vulcanization • Webs are led to relax for some formulations: rotor speed, Elastomer mixture is • time temperature, time, filling collected in "puppets" volume, etc.

pda.org

34

Mixing Control (Mill Control)

Curing of ISO - standard sample for testing purposes:

- Specific Gravity of test sample
- Shore A of vulcanized sample
- Dispersion of vulcanized sample
- Color of vulcanized sample
- Ash

- per Batch
- per Batch
- per Batch
- per Batch
- 1 + (10) batch =
 every 10th batch
 plus first and last
- Rheology of the compound
- 1 + (5) batch = every 5th batch plus first and last

Differentiated Solutions: Increasing Quality & Inspection

Final Inspection: Sampling, Packing and Release Testing

- Visual check according to the defect evaluation list for rubber parts
- Defect / individual characteristics
- Dimensional Inspection

- AQL Samples
- Customer Samples
- Retain Samples
- Test Samples

Production of Plungers Compression Molding

Case Study: End-of-line drug filled units reject trend

Feedback loop for continuous improvement!

Manufacturing Process

Typical Sterilization Treatments for Elastomeric Components

Ready-to-Use Steam vs Ready to Use Gamma for Plungers

1 mL long Plunger - Break Loose and Gliding Force at 0 and 12 Month

<u>Key findings:</u>

Steam treated plungers improve functionality due to lower and more consistent break loose forces

PDDA® Parenteral Drug Association

Physical and Chemical Characteristics Steam versus High Gamma

Packaging Materials

High-quality packaging materials

- Reduction of particle load of primary packaging → tighter specification
- Ease of use
- Pinhole resistant physical stress
- Plastic cartons & plastic pallets

Flexibility for Filling Needs

Drug Development and Life Cycle Management Require Multiple Packaging Formats Prescreens, Process Validations, Clinical Trials, Commercial fill-finish

Ready-to-Use Packaging Solutions

• Available with 100% automated verification

