Basics of Blow-Fill-Seal technology

• From polymer granulates to filled and sealed containers
• Traditional BFS-process
• Multilayer options
BFS is worldwide well established in the market.

Some figures

established since 1964

1st application for IV Solutions sold in 1965
1st application for Eye drops sold in 1971
1st application for Single dose Eye drops sold in 1976
1st application for Inhalation Therapy sold in 1981
1st application for Cough Syrup sold in 1982

more than 1800 BFS machines sold worldwide

Approx. 7 Billion of BFS containers per year

bp 312 from 1979
Within seconds BFS produces filled and closed containers from polymer granulate.

Traditional Blow-Fill-Seal (BFS)-Process

<table>
<thead>
<tr>
<th>EXTRUSION</th>
<th>BLOWING</th>
<th>FILLING*</th>
<th>SEALING</th>
<th>DEMOULDING</th>
</tr>
</thead>
</table>
| Polymer parison Extrusion | Bottles are blown into mould | Time-Pressure-Dosing system | Head mould closes | • Moulds open
• Container removed |

15 sec

/2/ The manufacture of sterile Pharmaceutical Products Using Blow-Fill-Seal-Technology Parenteral Drug Association technical report No 77, 2017
Blow-Fill-Seal: How it works

https://vimeo.com/rommelag
BFS containers are mostly made of polyolefins.

<table>
<thead>
<tr>
<th></th>
<th>LDPE</th>
<th>HDPE</th>
<th>PP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regulatory compliance</td>
<td>++</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Additives</td>
<td>++</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additives (potential extractables and leachables)</td>
<td>++</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Thermal stability</td>
<td>+</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(important for terminal sterilization)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water barrier</td>
<td>+</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Transparency</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical strength</td>
<td>0</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Softness, flexibility</td>
<td>++</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>(e.g. squeezability for eye drops)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BFS processing</td>
<td>++</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
BFS containers use medical grade polymers; polyolefins are preferred.

Some examples

PP, LDPE or HDPE
from e.g. LyondellBasell (Purell®), Borealis (Bormed®), INEOS, Total, Flint Hills, etc.

Autoclavable PE 106-115°C; PP 121°C

Extractables dossiers available for selected PE and PPs (by Toxikon)
Permeability: There are huge differences for polymers.

Typical polymers for BFS (mono and CoEx-systems)

Literature data

- Z. Zhang et al. Permeation of oxygen and water vapor through EVOH films as influenced by relative humidity, J. Appl. Polymer Science Vol.82 (8), 1866–1872, Nov.2001

Typical polymers

- PE-HD
- PE-LD
- PE
- PP
- PVC-P
- PS
- PC
- PLA
- PVC-U
- PET
- PEN
- PAN
- PVDC
- EVOH, 44%
- EVOH, 32%
- EVOH, 38%
- EVOH, 27%
- Cellulose

Permeability

- Oxygen permeation in cm³/m² d bar
- Water permeation in g/m² d at 23°C/85% RH
Small containers need special attention due to the filling volume to surface ratio.

<table>
<thead>
<tr>
<th></th>
<th>300 ml</th>
<th>15 ml</th>
<th>1 ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filling volume</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Container surface</td>
<td>311 cm²</td>
<td>57 cm²</td>
<td>8 cm²</td>
</tr>
<tr>
<td>Wall thickness</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permeation rate at 25°C/40% RH</td>
<td>2.3 mg/d</td>
<td>0.42 mg/d</td>
<td>0.06 mg/d</td>
</tr>
<tr>
<td>Loss after 2 years at 25°C/40% RH</td>
<td>0.6 %</td>
<td>2.1 %</td>
<td>4.3 %</td>
</tr>
</tbody>
</table>

LDPE (ρ=0.93 g/cm³)
Material properties can vary even in the same material class.

Some properties of different PEs

Source: Technical data sheets from different suppliers. Graph shows only general trends.
Functional requirement are key for proper material selection.

- functional requirements sometimes directly opposed
- development to find the best trade-off
- BFS offers a wide range of different polymers to cover different functional requirements
- different properties to be combined in multi-layer systems
Co-Extrusion of polymers to produce multilayer containers is well established.

Principle

- Flavors
- Oxygen
- CO₂
- Odors

Examples

- TANK STRUCTURE (6 layers)
 - Virgin HDPE
 - Adhesive
 - EVOH
 - Adhesive
 - Regrind
 - Virgin HDPE

BFS-Co-Extrusion

For pharma applications

- 5 Layers

- COC, COP, PP, ...
- EVOH, ...
- PE, PP, ...
- Nitrogen

Picture Note

The six-layer PP/EVOH squeeze bottle for Heinz ketchup, molded by American Can in 1983, was a breakthrough for barrier plastic bottles.
CoEx-BFS allows the improvement of barrier properties to minimize adsorption / permeation.

EVOH - excellent O$_2$ barrier properties for food and pharmaceutical packaging

PA - good gas barrier properties and chemical resistance, used for packaging of cosmetics and chemicals

Cycloolefinpolymers COP (Nippon Zeon)
inner layer for low adsorption used for parenteral packaging

Cycloolefincopolymers COC (Topas)
inner layer for low adsorption & low wvt used for parenteral packaging
Laser headspace spectroscopy offers fast, reliable and non-destructive testing.

- Test-kit containers in headspace testing

 - Tunable Diode Laser Absorption Spectroscopy at 760 nm
 - Test-kits filled with water
 - Conditioning at 40°C for 4 weeks
 - Storage at 40°C / 75% r.h. & 25°C / 60% r.h.

- Partners: Study performed by Wilco & Lighthouse

Oxygen head space data show strong barrier effect of EVOH.

O$_2$ headspace concentration over time

Michael W. Spallek, Johannes W. Geser and Martin Groh Characterization of Multilayer Blow-Fill-Seal Containers for Pharmaceutical Packaging
PDA Parenteral Packaging conference, 5-2015, Brussels