PRODUCTION AND PURIFICATION OF A VLP BASED HEPATITIS C VACCINE CANDIDATE

2015 PDA Europe Vaccine Conference, 01-02 December 2015, Berlin

Priyabrata Pattnaik, PhD
Director – Worldwide Vaccine Initiative
Presentation Outline

01 VLP as Hepatitis C vaccines
02 Baculovirus / insect cell expression platform
03 Challenges in VLP vaccine production and purification
04 VLP production in insect cell culture
05 Clarification of VLP
06 Concentration / Diafiltration of VLP
07 Chromatographic purification of VLP
08 Summary
Motivation

- VLP vaccine candidates have become quite popular of late
- VLP-based processes are, however, currently quite diverse
- We undertook an effort to standardize the process
- We used hepatitis C VLP as a model
- This presentation will explain the approach taken and present the results obtained
Why virus-like particles (VLPs)?

- Contain repetitive high-density displays of viral surface proteins that elicit strong T cell and B cell immune responses
- Non infectious because they do not contain genetic material, thus cannot replicate and are safer
- Their size (40-120 nm diameter) is optimal for uptake by dendritic cells
- Can be produced in a variety of cell culture systems
- Can self assemble in vivo
- Proven technology (Hepatitis B and Human Papilloma Virus vaccines)

VLPs for hepatitis C vaccine development

E1 and E2 glycoproteins from Hep C virus

Capsid and structure VLP from retrovirus (murine leukemia virus)

Hepatitis C

- 170 million people infected
- Cirrhosis, liver cancer, death
- Current therapies only partially effective, costly and poorly tolerated
- No vaccine currently exists
Insect cell / baculovirus VLP production platform

Recombinant baculovirus (BV) is used to infect insect cells

Key features
- Transient production
- High cell densities
- Regulatory acceptance
 - Cervarix® (GSK)
 - Flublok® (Protein Sciences)
 - Several late-stage clinicals
Challenges in VLP vaccine production

- Low production yields
- Stability of enveloped VLPs
- Difficulties in baculovirus (BV) removal lowers recovery
- No established platform processes for purification
Work carried out in collaboration with iBET

iBET: Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
Typical VLP-based vaccine process

Insect cell / baculovirus VLP production platform
Typical VLP-based vaccine process

Insect cell / baculovirus VLP production platform

- Media and Inoculum Preparation
- Cell growth in Bioreactor and Virus Inoculation
- Primary Clarification
- Bioburden Reduction
- Sterile Filtration
- Polishing Chromatography
- Baculovirus Inactivation
- Purification Chromatography
- UF/DF
Insect cell culture

- Cell culture was carried out in stirred tank glass bioreactor and disposable bioreactor (Mobius® 3L bioreactor)

- Sf9 insect cells and Sf900II cell culture media were used in the process

- Mobius® 3L bioreactor was first operated at same conditions previously used for stirred tank glass bioreactors

- Cell aggregation
- Formation of foam
- Longer lag phase
- Lower viable cell concentration
Insect cell culture conditions improved based on experience with Mobius® bioreactor

- Increased agitation rate
- Increased cell density of inoculation
- Replaced micro sparger with an open-pipe sparger
Microscopic evaluation of cells

<table>
<thead>
<tr>
<th>Stirred glass bioreactor</th>
<th>Run CR2</th>
<th>Run CR3</th>
<th>Run CR4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>45 hrs</td>
<td>70 hrs</td>
<td>95 hrs</td>
</tr>
</tbody>
</table>

![Microscopic images](images)

Mobius® 3L bioreactor

- Run CR2
- Run CR3
- Run CR4
Western blot analysis of VLPs using three markers

<table>
<thead>
<tr>
<th></th>
<th>GAG-MLV (core protein)</th>
<th>HCV-E1 (envelope protein)</th>
<th>HCV-E2 (envelope protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>STR1</td>
<td>[Image]</td>
<td>[Image]</td>
<td>[Image]</td>
</tr>
<tr>
<td>CR2</td>
<td>[Image]</td>
<td>[Image]</td>
<td>[Image]</td>
</tr>
<tr>
<td>CR3</td>
<td>[Image]</td>
<td>[Image]</td>
<td>[Image]</td>
</tr>
<tr>
<td>CR4</td>
<td>[Image]</td>
<td>[Image]</td>
<td>[Image]</td>
</tr>
</tbody>
</table>

VLPs pelleted by ultracentrifugation

Sucrose cushion purified VLPs
Successful use of Mobius® bioreactor for VLP production

- Successful growth of Sf9 insect cells and infection with baculovirus for production of VLP vaccine using Mobius® 3L disposable bioreactor

- Comparable cell and VLP properties between disposable and glass bioreactors

- Reproducible performance of the disposable bioreactor was seen with identical results for three separate cell culture runs
Typical VLP-based vaccine process
Insect cell / baculovirus VLP production platform

1. **Media and Inoculum Preparation**
2. **Cell growth in Bioreactor and Virus Inoculation**
3. **Bioburden Reduction**
4. **Sterile Filtration**
5. **UF/DF**
6. **Polishing Chromatography**
7. **Purification Chromatography**
8. **Inactivation**
9. **UF/DF**
10. **Purification**
Clarification

Centrifugation
- Lab models used early on
- Well suited for large-scale production
- High capital expense
- Shear

Depth filtration
- Well suited for smaller vaccine batches
- Easier to scale
- Lower cost
- Disposable
- Gentle treatment
- Simpler process development
- Wide choice of depth filters
Clarification: throughput data

Disposable capsule filters
Polygard® CN, nominal pore sizes of 10, 5, 0.6 and 0.3 µm
Pleated, all-polypropylene depth filters
Filter area: 17 cm²; Inlet flux: 988 LMH

![Graph showing volume filtered against inlet pressure for Polygard CN filter trains](image-url)
Unlike centrifugation, depth filtration resulted in ~70% DNA clearance.
Typical VLP-based vaccine process

Insect cell / baculovirus VLP production platform

- Media and Inoculum Preparation
- Cell growth in Bioreactor and Virus Inoculation
- Primary Clarification
- Bioburden Reduction
- Sterile Filtration
- UF/DF
- Polishing Chromatography
- Baculovirus Inactivation
- Purification Chromatography
Concentration of clarified VLP harvest

Pellicon® cassettes

Two different ultrafiltration membranes
- 300 kD composite regenerated cellulose (Ultracel® membrane, “CRC”)
- 100 kD polyethersulfone (Biomax® membrane, “PES”)

Similar process conditions employed
- 4-5x concentration factor
- Loading: 72 L/m²; Feed flux: 480 LMH; TMP: 1 bar; \(P_{\text{feed}} \): 0.6-0.9 bar; \(P_{\text{retent}} \): 1.1-1.4 bar
Concentration of clarified VLP harvest – results

Both membranes were fully retentive of the VLP.
Polygard® CN depth filters and Pellicon® cassettes with Ultrace® membrane offered best results

Clarification

- Filter-only clarification train can be used without compromising recovery yield of VLPs.
- Filter cascade composed of a Polygard® CN 5 µm filter followed by a 0.3 µm depth filter showed the highest recovery of HCV-VLP, improving on centrifugation/2° depth filtration
- Moderate DNA removal with depth filtration was seen

UF/DF

- Pellicon® cassette with 300 kD regenerated cellulose membrane offered the best combination of recovery and purification
Typical VLP-based vaccine process

Insect cell / baculovirus VLP production platform

- Media and Inoculum Preparation
- Cell growth in Bioreactor and Virus Inoculation
- Primary Clarification
- Bioburden Reduction
- UF/DF
- Sterile Filtration
- UF/DF
- Polishing Chromatography
- Baculovirus Inactivation

Purification Chromatography
Purification strategy

Anion exchange chromatography (AEX) resins used

Identify purification goal
Ensure analytics are available

Batch adsorption
- Resin in multiwell plates
- Vary pH, conductivity
- Measure recovery, purity

Chrom bind/elute
- Prepacked columns
- Confirm batch adsorption

Chrom breakthrough
- Prepacked columns
- Capacity measurements

Scale up

Iterations...
Batch adsorption experiments (bind-elute)

- Fractogel® and two Eshmuno® prototypes approach target of 2 BV LRV
- Yield increases with increasing ligand density for Eshmuno® prototypes
Batch adsorption experiments (flow-through)

- Inadequate performance in pure flow-through mode; Similar trends with ligand density
- **Adopted strategy**: collect the flow-through fraction, then wash/elute the resin to recover more material
Column experiments

Breakthrough curves for dynamic binding capacity

- 10% dynamic binding capacity ranges at 900-1300 ng VLP / mL of packed resin
- The Eshmuno® series has about 30% higher DBC compared to Fractogel®
DOE of flow-through conditions: Fractogel® TMAE

Inputs: load NaCl (100/200/300 mM) and flow rate (100/200/400 cm/hr)

Responses: % VLP recovery and BV LRV

Flow rate (mL/min)

- Higher flow rate
- OR
- Higher load conductivity
 - AND
 - Higher recovery
 - Lower BV LRV
Successful purification of VLPs using Fractogel® and Eshmuno® AEX chromatographic resins

- Successfully purified VLPs using Fractogel® TMAE commercial resins and AEX prototype resins

- Yield of >60% with ~2 LRV baculovirus can be achieved with a flow-through/wash purification strategy for both resins

- Options to increase recovery or purification depending on product value by varying process conditions
Optimum performance achieved

<table>
<thead>
<tr>
<th></th>
<th>Traditional lab process</th>
<th>New scalable process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baculovirus clearance</td>
<td>94%</td>
<td>97.6%</td>
</tr>
<tr>
<td>DNA clearance DNA</td>
<td>99.9%</td>
<td></td>
</tr>
<tr>
<td>HCP clearance HCP</td>
<td>82%</td>
<td></td>
</tr>
<tr>
<td>Recovery by P30 ELISA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VLP recovery VLP</td>
<td>< 10%</td>
<td>~ 65%</td>
</tr>
</tbody>
</table>
Typical VLP-based vaccine process

Insect cell / baculovirus VLP production platform

1. Media and Inoculum Preparation
2. Mobius® bioreactor
3. Polygard®-CN 5.0 → 0.3 µm filters
4. Sterile Filtration
5. UF/DF
6. Polishing Chromatography
7. Baculovirus Inactivation
8. Bioburden Reduction
9. Pellicon® Ultrafiltration cassettes UltraceIl® 300 kD membrane
10. Fractogel® AEX resins
Typical VLP-based vaccine process
Insect cell / baculovirus VLP production platform

Mobius® Bioreactor
Polygard®-CN 5.0→0.3 μm filters
Fractogel® AEX resins
Pellicon® Ultrafiltration cassettes
Ultracel® 300 kD membrane
Summary

- Successfully used Mobius® 3L disposable bioreactor for production of VLP-based vaccine in insect cell culture system

- Optimized downstream processing using Polygard® CN 5.0→0.3 µm depth filters followed by UF/DF using Pellicon® cassette with Ultracel® 300 kD membrane

- Purified VLP by using Fractogel® commercial resins and AEX prototypes

- Integrated all the above components to achieve recovery and impurity clearance in line with requirements
Team and acknowledgments

EMD/Merck Millipore

Alex Xenopoulos
Achim Schwaemmle
Andreas Stein
Annika Aldinger
Sylvain Ribaud
Lenaig Savary

iBET

Cristina Peixoto
Ricardo Silva
Rute Castro
Ana Sofia Coroadinha
Paula Alves
Manuel Carrondo
Thank you

Priyabrata Pattnaik, PhD
priyabrata.pattnaik@merckgroup.com
@pattnaik_p
https://sg.linkedin.com/in/priyabratapattnaik
https://plus.google.com/109816383630328905377