Qualification of Ethylene Oxide and Gamma Sterilisation Processes

Daniel Lanzon Microbiology Manager

Pfizer Perth

Presentation Outline

Overview for the Qualification

Ethylene Oxide (EtO) sterilisation process

Gamma sterilisation process

EtO Sterilisation

- Market required the vial surface of a product to be sterile for theatre use
- Parenteral product terminally sterilised
- Packaged into a theatre packet
- EtO selected to sterilise the vial surfaces

EtO Sterilisation

- EtO commonly used to sterilize objects sensitive to temperatures or radiation
- EtO penetrates well, moving through paper, tyvek, and some plastic films.
- EtO gas is highly flammable, toxic and carcinogenic.
- Bactericidal and sporicidal activity is achieved by reaction of EtO with nucleic acid.

Typical EtO treatment conditions:

- Temperature between 30 ° C and 60 ° C
- Relative humidity above 30%
- Gas concentration between 200 and 1000 mg/L
- Exposure time of 2 to 10 hours

EtO Processing steps

- Preconditioning/conditioning
 - Precondition to a specified RH and temperature
- Sterilization cycle
 - Exposure to EtO gas
- Aeration
 - Dissipation of remaining gases

Cycle Development

Equipment/Process qualified by contract steriliser

- IQ/OQ/PQ completed
- SOPs in place (Operational, Change control, maintenance etc)
- PM/calibration program in place

Sterilisation cycle development

- Identify Load pattern
- Define preconditioning
- Define sterilisation cycle
- Define sterilisation requirements e.g. SAL of 10⁻⁶
- Define product attributes to be tested

Use Contract Steriliser experience in developing the sterilisation process

Sterilisation Load Pattern

Developed maximum load pattern

- Number of shippers
- Stacking orientation
- Load orientation (preconditioning/cycle)
- Number of pallets
- Mixed load or dedicated load

EtO Qualification Example

- Pilot batch used to provide confidence in the proposed process
- Pilot batch manufactured and exposed through the EtO sterilisation process
 - proposed preconditioning and full cycle
- Challenged with:
 - Biological Indicators
 - Temperature and relative humidity data loggers
 - Container closure

Steps in EtO qualification

Qualification process established

- Packaging bioburden
- Load preconditioning
- Survival Cycle
- Half Cycle
 - Support Overkill sterilisation to provide SAL 10⁻⁶
- Full Cycle
 - Support container closure of theatre packet
 - Support container closure of vial
 - Removal of Ethylene oxide residuals or byproducts
 - Product stability over shelf life
 - Sterility
 - Multiple sterilisation
- Revalidation requirements

Packaging bioburden

- Product packaged in Perth shipped to Melbourne for sterilisation
- Starting material bioburden controlled
- Packaging process controlled
- Bioburden monitored throughout the process (not exposing to the sterilisation process)

Bioburden determination

- Bioburden determined of the product as per ISO 11737-1:2006
 - Understand your product
 - Bioburden recovery method qualified
 - Is a correction factor required to compensate for incomplete removal of micro-organisms from the product?
- Bioburden Determined across multiple batches demonstrated a consistent low bioburden

Load Preconditioning

- Use specified load pattern
- Demonstrate temperature and relative humidity distribution throughout the load
- Time set based on equilibrium time
- Simulate winter conditions

Microbial Challenge (BIs)

- Self contained Bls used (Bacillus atrophaeus worse Bls for EtO)
- Number BIs determined as per ANSI/AAMI/ISO 11135-1:2007
- 50 Bls located throughout the load (ensuring worse case locations captured)
- Bls exposed to complete process
- Positive control BIs exposed to complete process except for the sterilisation cycle exposure

Survival cycle

- Demonstrate capability to recover Bls
- Survival cycle identical as full cycle except the EtO gas exposure time is less
 - Mindful of selection of exposure time
- Single cycle
- Survivors support recovery process

Half Cycle

- Half cycle identical as full cycle except the EtO gas exposure time is half
- Run in triplicate
- Challenges
 - Bioburden
 - Bls
 - Sterility
- Half cycle used to support a SAL of 10⁻⁶

Full cycle

- Full Cycle Primarily used to support product and packaging integrity
- Run in triplicate
- Challenges
 - Bioburden
 - Bls
 - Sterility
 - Container closure of theatre packet
 - Container closure of vial
 - Ethylene Oxide residual
 - Product Stability

Resterilisation

Samples exposed to multiple cycles at worse case locations

Challenges

- Container closure of theater packet
- Container closure of vial
- Ethylene Oxide residual
- Product Stability

Revalidation/requalification

- Re-qualification program established
 - E.g. annual half and full cycle
- Change Control
 - Any change to the EtO sterilisation process that could effect the effectiveness of the EtO gas
 - New chamber/chamber modification
 - Type of gas
 - Preconditioning change
 - Recipe change
 - Product change
 - Bioburden change
 - Packaging change
 - Component Change

Revalidation/requalification

Asses All changes for impact to your product

Routine Processes

Contract sterilisers/manufactures responsibilities

- Defined in a Robust Quality Agreement
- SOPs defining requirements
- Manufacturer responsible for the SAL of the product
- What are the critical parameters
 - Defined in a SOP
 - Used as a release criteria
- Do you use Bls??

Gamma Sterilisation

- Market required a sterile hospital grade disinfectant
- Product filled into a bottle/spray mechanism and packaged within a low-density polyethylene (LDPE) bag
- Product terminally sterilised via gamma irradiation

Gamma Irradiation Mode of Activity

- Bacteria, spores and viruses are destroyed by radiolysis
- High energy emitted from an Isotope source (e.g. Cobalt 60) breaks chemical bonds in DNA and other cell structures that lead to dysfunction and destruction of the microbe.

Qualification process

- Cycle development
- Product bioburden
- Dose established and verification
- Performance Qualification
 - Dosimetry
 - -Container closure
 - Product stability over shelf life
 - -Sterility
 - -Maximum dose exposure
- Requalification/Revalidation/Change Control

Cycle development

- Developed maximum load pattern
 - Number of shippers per tote bin
 - Load orientation
 - Product density
- Contractor expertise used to determine cycle exposure

Packaging bioburden

- Product packaged in Perth shipped to Melbourne for sterilisation
- Packaging process controlled
- Starting material bioburden controlled
- Bioburden monitored throughout the process (not exposing to the sterilisation process)
- Demonstrated robust microbial control

Bioburden determination

- Bioburden determined of the product and device as per ISO 11737-1:2006
 - Understand your product
 - Bioburden recovery method qualified
 - Is a correction factor required to compensate for incomplete removal of micro-organisms from the product?
 - The whole device, including product is evaluated for bioburden
- Determined across multiple batches

Dose establishment and verification

- ISO 11137-2 2012 Sterilization of healthcare products radiation – Part 2: Establishing the sterilization dose.
- Sterilization dose: Minimum dose required to achieve the specified SAL
- What is the sterilisation dose that will be established
 - 25 kGy/15 kGy/Other
 - Single or multiple batches used for qualification
- Which method will be used to substantiate the dose
 - Method 1
 - Method 2
 - Method VD_{max}25 or Method VD_{max}15

Dose Establishment and verification VD_{max}25

- Average bioburden determined from 3 batches
- Dose that provides a SAL of 10⁻² is determined from Table 9 in ISO 11137-2. This is the verification dose

Table 9 extract from ANSI/AAMI/ISO 11137-2:2012 Sterilization of health care products — Radiation — Part 2: Establishing the sterilization dose

Average bioburden	SIP equal to 1.0 VDmax 25 (kGy)	SIP dose reduction factor (kGy)
11	7.2	3.55
12	7.3	3.53
13	7.4	3.51
14	7.5	3.50
15	7.6	3.48
16	7.6	3.47
17	7.7	3.46

Dose Establishment and verification VD_{max}25

- 10 items exposed to the selected verification dose
- Actual dose must be not exceed the verification doe by > 10%
- All product is individually sterility tested
- If not more than 1 positive sterility test then verification accepted and 25kGy substantiated to achieve the required SAL (10⁻⁶)

Performance Qualification

- Multiple dosimeters per shipper
- At different stages of the sterilisation train (beginning, middle and end)
- Triplicate exposure
 - Dosimetry
 - –Sterility
- Selection routine dosimeter location
- Setting a maximum dose
 - Product stability over shelf life
 - -Container closure

Dose Audit

- Periodic sterilisation dose audits are carried out to confirm the continued appropriateness of the sterilisation dose
- Average bioburden determined from 1 batch
- 10 items exposed to the verification dose used in the initial qualification
- Actual dose must be not exceed the verification dose by > 10%
- All product is individually sterility tested
- If not more than 1 positive sterility test then sterilization dose audit is accepted.

Revalidation/Requalification

- Re-qualification program established
 - E.g. annual repeat of dosimetry studies
 - Dose audit (quarterly)

Change Control

- Any change to the radiator that could effect the dose distribution or dose must be assessed
 - Delivery system change
 - Source cable replacement
- Cobalt source replenishment
- Product change
 - Density change
 - Bioburden change
 - Packaging change
 - Component change

Useful References

- ANSI/AAMI/ISO 11137-1-2006/(R)2010 Sterilization of health care products - Radiation - Part 1: Requirements for the development, validation and routine control of a sterilization process for medical devices
- ANSI/AAMI/ISO 11137-2-2012 Sterilization of health care products - Radiation - Part 2: Establishing the sterilization dose.
- ANSI/AAMI/ISO 11137-3-2006(R)2010 Sterilization of health care products - Radiation - Part 3: Guidance on dosimetric aspects
- AAMI TIR33:2005 Sterilization of health care products -Radiation sterilization - Substantiation of a selected sterilization dose - Method VDmax
- AAMI TIR40:2009 Sterilization of health care products -Radiation - Guidance on dose setting utilizing a Modified Method 2.
- ANSI/AAMI/ISO 11737-1-2006 Sterilization of health care products – Microbiological Methods - Part 1: Determination of the population of microorganisms on product.

Useful References

- AAMI TIR14:2009 Association for the Advancement of Medical Instrumentation Contract sterilization using ethylene oxide
- ANSI/AAMI/ISO TIR11135-2:2008 Association for the Advancement of Medical Instrumentation Sterilization of health care products — Ethylene oxide — Part 2: Guidance on the application of ANSI/AAMI/ISO 11135-1
- ANSI/AAMI/ISO 11135-1:2007 Sterilization of health care products Ethylene oxide — Part 1: Requirements for development, validation, and routine control of a sterilization process for medical devices
- ANSI/AAMI/ISO 11138-2:2006/(R)2010 Sterilization of health care products - Biological indicators - Part 2: Biological indicators for ethylene oxide sterilization processes.
- AAMI TIR28:2009 Association for the Advancement of Medical Instrumentation Product adoption and process equivalence for ethylene oxide sterilization
- ANSI/AAMI/ISO 10993-7:2008 Biological evaluation of medical devices—Part 7: Ethylene oxide sterilization residuals
- AAMI TIR16:2009 Association for the Advancement of Medical Instrumentation Microbiological aspects of ethylene oxide sterilization.
- AAMI TIR15:2009 Association for the Advancement of Medical Instrumentation Physical aspects of ethylene oxide sterilization

Questions

